Do you want to publish a course? Click here

Closed-form performance analysis of linear MIMO receivers in general fading scenarios

55   0   0.0 ( 0 )
 Added by Giusi Alfano
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Linear precoding and post-processing schemes are ubiquitous in wireless multi-input-multi-output (MIMO) settings, due to their reduced complexity with respect to optimal strategies. Despite their popularity, the performance analysis of linear MIMO receivers is mostly not available in closed form, apart for the canonical (uncorrelated Rayleigh fading) case, while for more general fading conditions only bounds are provided. This lack of results is motivated by the complex dependence of the output signal-to-interference and noise ratio (SINR) at each branch of the receiving filter on both the squared singular values as well as the (typically right) singular vectors of the channel matrix. While the explicit knowledge of the statistics of the SINR can be circumvented for some fading types in the analysis of the linear Minimum Mean-Squared Error (MMSE) receiver, this does not apply to the less complex and widely adopted Zero-Forcing (ZF) scheme. This work provides the first-to-date closed-form expression of the probability density function (pdf) of the output ZF and MMSE SINR, for a wide range of fading laws, encompassing, in particular, correlations and multiple scattering effects typical of practically relevant channel models.



rate research

Read More

150 - Amin Sakzad , J. Harshan , 2012
A new architecture called integer-forcing (IF) linear receiver has been recently proposed for multiple-input multiple-output (MIMO) fading channels, wherein an appropriate integer linear combination of the received symbols has to be computed as a part of the decoding process. In this paper, we propose a method based on Hermite-Korkine-Zolotareff (HKZ) and Minkowski lattice basis reduction algorithms to obtain the integer coefficients for the IF receiver. We show that the proposed method provides a lower bound on the ergodic rate, and achieves the full receive diversity. Suitability of complex Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm (CLLL) to solve the problem is also investigated. Furthermore, we establish the connection between the proposed IF linear receivers and lattice reduction-aided MIMO detectors (with equivalent complexity), and point out the advantages of the former class of receivers over the latter. For the $2 times 2$ and $4times 4$ MIMO channels, we compare the coded-block error rate and bit error rate of the proposed approach with that of other linear receivers. Simulation results show that the proposed approach outperforms the zero-forcing (ZF) receiver, minimum mean square error (MMSE) receiver, and the lattice reduction-aided MIMO detectors.
Free space optical (FSO) communication has been receiving increasing attention in recent years with its ability to achieve ultra-high data rates over unlicensed optical spectrum. A major performance limiting factor in FSO systems is atmospheric turbulence which severely degrades the system performance. To address this issue, multiple transmit and/or receive apertures can be employed, and the performance can be improved via diversity gain. In this paper, we investigate the bit error rate (BER) performance of FSO systems with transmit diversity or receive diversity with equal gain combining (EGC) over atmospheric turbulence channels described by the Double Generalized Gamma (Double GG) distribution. The Double GG distribution, recently proposed, generalizes many existing turbulence models in a closed-form expression and covers all turbulence conditions. Since the distribution function of a sum of Double GG random variables (RVs) appears in BER expression, we first derive a closed-form upper bound for the distribution of the sum of Double GG distributed RVs. A novel union upper bound for the average BER as well as corresponding asymptotic expression is then derived and evaluated in terms of Meijers G-functions.
For multiple-input/multiple-output (MIMO) spatial multiplexing with zero-forcing detection (ZF), signal-to-noise ratio (SNR) analysis for Rician fading involves the cumbersome noncentral-Wishart distribution (NCWD) of the transmit sample-correlation (Gramian) matrix. An textsl{approximation} with a textsl{virtual} CWD previously yielded for the ZF SNR an approximate (virtual) Gamma distribution. However, analytical conditions qualifying the accuracy of the SNR-distribution approximation were unknown. Therefore, we have been attempting to exactly characterize ZF SNR for Rician fading. Our previous attempts succeeded only for the sole Rician-fading stream under Rician--Rayleigh fading, by writing it as scalar Schur complement (SC) in the Gramian. Herein, we pursue a more general, matrix-SC-based analysis to characterize SNRs when several streams may undergo Rician fading. On one hand, for full-Rician fading, the SC distribution is found to be exactly a CWD if and only if a channel-mean--correlation textsl{condition} holds. Interestingly, this CWD then coincides with the textsl{virtual} CWD ensuing from the textsl{approximation}. Thus, under the textsl{condition}, the actual and virtual SNR-distributions coincide. On the other hand, for Rician--Rayleigh fading, the matrix-SC distribution is characterized in terms of determinant of matrix with elementary-function entries, which also yields a new characterization of the ZF SNR. Average error probability results validate our analysis vs.~simulation.
A major performance degrading factor in free space optical communication (FSO) systems is atmospheric turbulence. Spatial diversity techniques provide a promising approach to mitigate turbulence-induced fading. In this paper, we study the error rate performance of FSO links with spatial diversity over atmospheric turbulence channels described by the Double Generalized Gamma distribution which is a new generic statistical model covering all turbulence conditions. We assume intensity modulation/direct detection with on-off keying and present the BER performance of single-input multiple-output (SIMO), multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) FSO systems over this new channel model.
We analyze the performance of multiple input/multiple output (MIMO) communications systems employing spatial multiplexing and zero-forcing detection (ZF). The distribution of the ZF signal-to-noise ratio (SNR) is characterized when either the intended stream or interfering streams experience Rician fading, and when the fading may be correlated on the transmit side. Previously, exact ZF analysis based on a well-known SNR expression has been hindered by the noncentrality of the Wishart distribution involved. In addition, approximation with a central-Wishart distribution has not proved consistently accurate. In contrast, the following exact ZF study proceeds from a lesser-known SNR expression that separates the intended and interfering channel-gain vectors. By first conditioning on, and then averaging over the interference, the ZF SNR distribution for Rician-Rayleigh fading is shown to be an infinite linear combination of gamma distributions. On the other hand, for Rayleigh-Rician fading, the ZF SNR is shown to be gamma-distributed. Based on the SNR distribution, we derive new series expressions for the ZF average error probability, outage probability, and ergodic capacity. Numerical results confirm the accuracy of our new expressions, and reveal effects of interference and channel statistics on performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا