No Arabic abstract
The phase diagram of graphene decorated with magnetic adatoms distributed either on a single sublattice, or evenly over the two sublattices, is computed for adatom concentrations as low as $sim1%$. Within the framework of the $s$-$d$ interaction, we take into account disorder effects due to the random positioning of the adatoms and/or to the thermal fluctuations in the direction of magnetic moments. Despite the presence of disorder, the magnetic phases are shown to be stable down to the lowest concentration accessed here. This result agrees with several experimental observations where adatom decorated graphene has been shown to have a magnetic response. In particular, the present theory provides a qualitative understanding for the results of Hwang et al. [Sci. Rep. 6, 21460 (2016)], where a ferromagnetic phase has been found below $sim30,text{K}$ for graphene decorated with S-atoms.
When light is incident on a medium with spatially disordered index of refraction, interference effects lead to near-perfect reflection when the number of dielectric interfaces is large, so that the medium becomes a transparent mirror. We investigate the analog of this effect for electrons in twisted bilayer graphene (TBG), for which local fluctuations of the twist angle give rise to a spatially random Fermi velocity. In a description that includes only spatial variation of Fermi velocity, we derive the incident-angle-dependent localization length for the case of quasi-one-dimensional disorder by mapping this problem onto one dimensional Anderson localization. The localization length diverges at normal incidence as a consequence of Klein tunneling, leading to a power-law decay of the transmission when averaged over incidence angle. In a minimal model of TBG, the modulation of twist angle also shifts the location of the Dirac cones in momentum space in a way that can be described by a random gauge field, and thus Klein tunneling is inexact. However, when the Dirac electrons incident momentum is large compared to these shifts, the primary effect of twist disorder is only to shift the incident angle associated with perfect transmission away from zero. These results suggest a mechanism for disorder-induced collimation, valley filtration, and energy filtration of Dirac electron beams, so that TBG offers a promising new platform for Dirac fermion optics.
Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alphaapprox 0.3 ^circ$) and flat bands at magic angles ($alpha approx 1^circ$). We show that tuning the twist angle to $alpha^*approx 0.8^circ$ generates flat bands away from charge neutrality with a triangular superlattice periodicity. When doped with $pm 6$ electrons per moire cell, these bands are half-filled and electronic interactions produce a symmetry-broken ground state (Stoner instability) with spin-polarized regions that order ferromagnetically. Application of an interlayer electric field breaks inversion symmetry and introduces valley-dependent dispersion that quenches the magnetic order. With these results, we propose a solid-state platform that realizes electrically tunable strong correlations.
Magnetism in single-side hydrogenated (C$_2$H) and fluorinated (C$_2$F) graphene is analyzed in terms of the Heisenberg model with parameters determined from first principles. We predict a frustrated ground state for both systems, which means the instability of collinear spin structures and sheds light on the absence of a conventional magnetic ordering in defective graphene demonstrated in recent experiments. Moreover, our findings suggest a highly correlated magnetic behavior at low temperatures offering the possibility of a spin-liquid state.
Three-dimensional topological insulators (TIs) have emerged as a unique state of quantum matter and generated enormous interests in condensed matter physics. The surfaces of a three dimensional (3D) TI are composed of a massless Dirac cone, which is characterized by the Z2 topological invariant. Introduction of magnetism on the surface of TI is essential to realize the quantum anomalous Hall effect (QAHE) and other novel magneto-electric phenomena. Here, by using a combination of first principles calculations, magneto-transport, angle-resolved photoemission spectroscopy (ARPES), and time resolved ARPES (tr-ARPES), we study the electronic properties of Gadolinium (Gd) doped Sb2Te3. Our study shows that Gd doped Sb2Te3 is a spin-orbit-induced bulk band-gap material, whose surface is characterized by a single topological surface state. We further demonstrate that introducing diluted 4f-electron magnetism into the Sb2Te3 topological insulator system by the Gd doping creates surface magnetism in this system. Our results provide a new platform to investigate the interaction between dilute magnetism and topology in doped topological materials.
We discuss the conditions under which the predicted (but not yet observed) zero-field interlayer excitonic condensation in double layer graphene has a critical temperature high enough to allow detection. Crucially, disorder arising from charged impurities and corrugation in the lattice structure --- invariably present in all real samples --- affects the formation of the condensate via the induced charge inhomogeneity. In the former case, we use a numerical Thomas-Fermi-Dirac theory to describe the local fluctuations in the electronic density in double layer graphene devices and estimate the effect these realistic fluctuations have on the formation of the condensate. To make this estimate, we calculate the critical temperature for the interlayer excitonic superfluid transition within the mean-field BCS theory for both optimistic (unscreened) and conservative (statically screened) approximations for the screening of the interlayer Coulomb interaction. We also estimate the effect of allowing dynamic contributions to the interlayer screening. We then conduct similar calculations for double quadratic bilayer graphene, showing that the quadratic nature of the low-energy bands produces pairing with critical temperature of the same order of magnitude as the linear bands of double monolayer graphene.