Do you want to publish a course? Click here

A compactness result for a system with weight and boundary singularity

66   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We give blow-up behavior for solutions to an elliptic system with Dirichlet condition, and, weight and boundary singularity. Also, we have a compactness result for this elliptic system with regular H{o}lderian weight and boundary singularity and Lipschitz condition.



rate research

Read More

We give a blow-up behavior for solutions to a problem with singularity and with Dirichlet condition. An application, we have a compactness of the solutions to this Problem with singularity and Lipschitz conditions.
We consider a variational problem with boundary singularity and Dirichlet condition. We give a blow-up analysis for sequences of solutions of an equation with exponential nonlinearity. Also, we derive a compactness criterion under some conditions.
The paper provides an extension, to fractional order Sobolev spaces, of the classical result of Murat and Brezis which states that the positive cone of elements in $H^{-1}(Omega)$ compactly embeds in $W^{-1,q}(Omega)$, for every $q < 2$ and for any open and bounded set $Omega$ with Lipschitz boundary. In particular, our proof contains the classical result. Several new analysis tools are developed during the course of the proof to our main result which are of wider interest. Subsequently, we apply our results to the convergence of convex sets and establish a fractional version of the Mosco convergence result of Boccardo and Murat. We conclude with an application of this result to quasi-variational inequalities.
We give blow-up analysis for the solutions of an elliptic equation under some conditions. Also, we derive a compactness result for this equation.
We give a blow-up analysis and a compactness result for an equation with Holderian condition and boundary singularity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا