We consider a variational problem with boundary singularity and Dirichlet condition. We give a blow-up analysis for sequences of solutions of an equation with exponential nonlinearity. Also, we derive a compactness criterion under some conditions.
We give a blow-up behavior for solutions to a problem with singularity and with Dirichlet condition. An application, we have a compactness of the solutions to this Problem with singularity and Lipschitz conditions.
On Riemannian manifolds of dimension 4, for prescribed scalar curvature equation, under lipschitzian condition on the prescribed curvature, we have an uniform estimate for the solutions of the equation if we control their minimas.
We give blow-up behavior for solutions to an elliptic system with Dirichlet condition, and, weight and boundary singularity. Also, we have a compactness result for this elliptic system with regular H{o}lderian weight and boundary singularity and Lipschitz condition.
We give a detailed study of attractors for measure driven quintic damped wave equations with periodic boundary conditions. This includes uniform energy-to-Strichartz estimates, the existence of uniform attractors in a weak or strong topology in the energy phase space, the possibility to present them as a union of all complete trajectories, further regularity, etc.