We describe predictions for top-quark pair differential distributions at hadron colliders, which combine state-of-the-art NNLO QCD calculations and NLO electroweak corrections together with double resummation at NNLL$$ accuracy of threshold logarithms and small-mass logarithms. This is the first time that such a combination has appeared in the literature. Numerical results are presented for the invariant-mass distribution, the transverse-momentum distribution as well as rapidity distributions.
We compute the total top-quark pair production cross section at the Tevatron and LHC based on approximate NNLO results, and on the summation of threshold logarithms and Coulomb enhancements to all orders with next-to-next-to-leading logarithmic (NNLL) accuracy, including bound-state effects. We find sigma_{tbar t} = 7.22^{+0.31+0.71}_{-0.47-0.55} pb at Tevatron and sigma_{tbar t} = 162.6^{+7.4+15.4}_{-7.6-14.7} pb at LHC with 7 TeV c.o.m. energy, for m_t=173.3 GeV. The implementation of joint soft and Coulomb resummation, its ambiguities, and the present theoretical uncertainty are discussed in detail. We further obtain new approximate results at N3LO.
We present results for the next-to-leading order QCD corrections to the production and semi-leptonic decays of a top quark pair in hadron collisions, retaining all spin correlations. To evaluate the virtual corrections, we employ generalized D-dimensional unitarity. The computation is implemented in a numerical program which allows detailed studies of ttbar-related observables at the Tevatron and the LHC.
We present the calculation of the NLO QCD corrections to the electroweak production of top-antitop pairs at the CERN LHC in the presence of a new neutral gauge boson. The corrections are implemented in the parton shower Monte Carlo program POWHEG. Standard Model (SM) and new physics interference effects are properly taken into account. QED singularities, first appearing at this order, are consistently subtracted. Numerical results are presented for SM and $Z$ total cross sections and distributions in invariant mass, transverse momentum, azimuthal angle and rapidity of the top-quark pair. The remaining theoretical uncertainty from scale and PDF variations is estimated, and the potential of the charge asymmetry to distinguish between new physics models is investigated for the Sequential SM and a leptophobic topcolor model.
We consider top quark pair production in association with a hard jet through next-to-leading order in perturbative QCD. Top quark decays are treated in the narrow width approximation and spin correlations are retained throughout the computation. We include hard jet radiation by top quark decay products and explore their importance for basic kinematic distributions at the Tevatron and the LHC. Our results suggest that QCD corrections and jet radiation in decays can lead to significant changes in shapes of basic distributions and, therefore, need to be included for the description of ttbar+jet production. We compare the shape of the transverse momentum distribution of a top quark pair recently measured by the D0 collaboration with the result of our computation and find reasonable agreement.
We compute the QCD corrections to the production of a top quark pair in association with one hard jet at the Tevatron and the LHC, using the method of generalized D-dimensional unitarity. Top quark decays are included at leading order in perturbative QCD. We present kinematic distributions of top quark decay products in lepton plus jets and dilepton final states at the Tevatron and the LHC, using realistic selection cuts. We confirm a strong reduction of the top quark forward-backward asymmetry for the process ttbar+jet at the Tevatron at next-to-leading order, first observed by Dittmaier, Uwer and Weinzierl. We argue that there is a natural way to understand this reduction and that it does not imply a breakdown of the perturbative expansion for the asymmetry.
Michal Czakon
,Andrea Ferroglia
,Alexander Mitov
.
(2019)
.
"Top-quark pair production at complete-NLO accuracy with NNLO+NNLL$$ corrections in QCD"
.
Li Lin Yang
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا