No Arabic abstract
PDS 110 is a young disk-hosting star in the Orion OB1A association. Two dimming events of similar depth and duration were seen in 2008 (WASP) and 2011 (KELT), consistent with an object in a closed periodic orbit. In this paper we present data from a ground-based observing campaign designed to measure the star both photometrically and spectroscopically during the time of predicted eclipse in September 2017. Despite high-quality photometry, the predicted eclipse did not occur, although coherent structure is present suggesting variable amounts of stellar flux or dust obscuration. We also searched for RV oscillations caused by any hypothetical companion and can rule out close binaries to 0.1 $M_odot$. A search of Sonneberg plate archive data also enabled us to extend the photometric baseline of this star back more than 50 years, and similarly does not re-detect any deep eclipses. Taken together, they suggest that the eclipses seen in WASP and KELT photometry were due to aperiodic events. It would seem that PDS 110 undergoes stochastic dimmings that are shallower and shorter-duration than those of UX Ori variables, but may have a similar mechanism.
We report the discovery of eclipses by circumstellar disc material associated with the young star PDS 110 in the Ori OB1a association using the SuperWASP and KELT surveys. PDS 110 (HD 290380, IRAS 05209-0107) is a rare Fe/Ge-type star, a ~10 Myr-old accreting intermediate-mass star showing strong infrared excess (L$_{rm IR}$/L$_{rm bol}$ ~ 0.25). Two extremely similar eclipses with a depth of ~30% and duration ~25 days were observed in November 2008 and January 2011. We interpret the eclipses as caused by the same structure with an orbital period of $808pm2$ days. Shearing over a single orbit rules out diffuse dust clumps as the cause, favouring the hypothesis of a companion at ~2AU. The characteristics of the eclipses are consistent with transits by an unseen low-mass (1.8-70M$_{Jup}$) planet or brown dwarf with a circum-secondary disc of diameter ~0.3 AU. The next eclipse event is predicted to take place in September 2017 and could be monitored by amateur and professional observatories across the world.
Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which lost almost all of their hydrogen envelopes. This mass loss is often triggered by common envelope interactions with close stellar or even substellar companions. Cool companions like late-type stars or brown dwarfs are detectable via characteristic light curve variations like reflection effects and often also eclipses. To search for such objects we obtained multi-band light curves of 26 close sdO/B binary candidates from the MUCHFUSS project with the BUSCA instrument. We discovered a new eclipsing reflection effect system ($P=0.168938$~d) with a low-mass M dwarf companion ($0.116 M_{rm odot}$). Three more reflection effect binaries found in the course of the campaign were already published, two of them are eclipsing systems, in one system only showing the reflection effect but no eclipses the sdB primary is found to be pulsating. Amongst the targets without reflection effect a new long-period sdB pulsator was discovered and irregular light variations were found in two sdO stars. The found light variations allowed us to constrain the fraction of reflection effect binaries and the substellar companion fraction around sdB stars. The minimum fraction of reflection effect systems amongst the close sdB binaries might be greater than 15% and the fraction of close substellar companions in sdB binaries might be as high as $8.0%$. This would result in a close substellar companion fraction to sdB stars of about 3%. This fraction is much higher than the fraction of brown dwarfs around possible progenitor systems, which are solar-type stars with substellar companions around 1 AU, as well as close binary white dwarfs with brown dwarf companions. This might be a hint that common envelope interactions with substellar objects are preferentially followed by a hot subdwarf phase.
The Blazhko effect in CX Lyr has been reported for the first time by Le Borgne et al. (2007). The authors have pointed out that the Blazhko period was not evaluated accurately due to dataset scarcity. The possible period values announced were 128 or 227 days. A newly conducted four-month observing campaign in 2008 (fifty-nine observation nights) has provided fourteen times of maximum. From a period analysis of measured times of maximum, a Blazhko period of 62 +/- 2 days can be suggested. However, the present dataset is still not densely sampled enough to exclude that the measured period is still a modulation of the real Blazhko period. Indeed the shape of the (O-C) curve does not repeat itself exactly during the campaign duration.
Time-series, multi-color photometry and high-resolution spectra of the short period eclipsing binary V Tri were obtained by observations. The completely covered light and radial velocity curves of the binary system are presented. All times of light minima derived from both photoelectric and CCD photometry were used to calculate the orbital period and new ephemerides of the eclipsing system. The analysis of $O-C$ diagram reveals that the orbital period is $0.58520481 days$, decreasing at a rate of $dP/dt=-7.80times10^{-8} d yr^{-1} $. The mass transfer between the two components and the light time-travel effect due to a third body could be used to explain the period decrease. However, a semidetached configuration with the less-mass component filling and the primary nearly filling each of their Roche lobes was derived from the synthesis of the light and radial velocity curves by using the 2015 version of the Wilson-Devinney code. We consider the period decrease to be the nonconservative mass transfer from the secondary component to the primary and the mass loss of the system, which was thought to be an EB type while it should be an EA type (semi-detached Algol-type) from our study. The masses, radii and luminosities of the primary and secondary are $1.60pm0.07 M_odot$, $1.64pm0.02 R_odot$, $14.14pm0.73 L_odot$ and $0.74pm0.02 M_odot$, $1.23pm0.02 R_odot$, $1.65pm0.05 L_odot$, respectively.
Physical processes that govern the star and planet formation sequence influence the chemical composition and evolution of protoplanetary disks. To understand the chemical composition of protoplanets, we need to constrain the composition and structure of the disks from whence they are formed. We aim to determine the molecular abundance structure of the young disk around the TMC1A protostar on au scales in order to understand its chemical structure and any possible implications for disk formation. We present spatially resolved Atacama Large Millimeter/submillimeter Array observations of CO, $HCO^{+}$, HCN, DCN, and SO line emission, as well as dust continuum emission, in the vicinity of TMC1A. Molecular column densities are estimated both under the assumption of optically thin emission from molecules in LTE as well as through more detailed non-LTE radiative transfer calculations. Resolved dust continuum emission from the disk is detected between 220 and 260 GHz. Rotational transitions from HCO$^{+}$, HCN, and SO are also detected from the inner 100 au region. From the derived $HCO^{+}$ abundance, we estimate the ionization fraction of the disk surface and find values that imply that the accretion process is not driven by the magneto-rotational instability. The molecular abundances averaged over the TMC1A disk are similar to its protostellar envelope and other, older Class II disks. We meanwhile find a discrepancy between the young disks molecular abundances relative to Solar System objects. Abundance comparisons between the disk and its surrounding envelope for several molecular species reveal that the bulk of planet-forming material enters the disk unaltered. Differences in HCN and $H_2 O$ molecular abundances between the disk around TMC1A, Class II disks, and Solar System objects trace the chemical evolution during disk and planet formation.