Do you want to publish a course? Click here

The MUCHFUSS photometric campaign

140   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which lost almost all of their hydrogen envelopes. This mass loss is often triggered by common envelope interactions with close stellar or even substellar companions. Cool companions like late-type stars or brown dwarfs are detectable via characteristic light curve variations like reflection effects and often also eclipses. To search for such objects we obtained multi-band light curves of 26 close sdO/B binary candidates from the MUCHFUSS project with the BUSCA instrument. We discovered a new eclipsing reflection effect system ($P=0.168938$~d) with a low-mass M dwarf companion ($0.116 M_{rm odot}$). Three more reflection effect binaries found in the course of the campaign were already published, two of them are eclipsing systems, in one system only showing the reflection effect but no eclipses the sdB primary is found to be pulsating. Amongst the targets without reflection effect a new long-period sdB pulsator was discovered and irregular light variations were found in two sdO stars. The found light variations allowed us to constrain the fraction of reflection effect binaries and the substellar companion fraction around sdB stars. The minimum fraction of reflection effect systems amongst the close sdB binaries might be greater than 15% and the fraction of close substellar companions in sdB binaries might be as high as $8.0%$. This would result in a close substellar companion fraction to sdB stars of about 3%. This fraction is much higher than the fraction of brown dwarfs around possible progenitor systems, which are solar-type stars with substellar companions around 1 AU, as well as close binary white dwarfs with brown dwarf companions. This might be a hint that common envelope interactions with substellar objects are preferentially followed by a hot subdwarf phase.



rate research

Read More

163 - C. Ulusoy , B. Ulac{s} , T. Gulmez 2013
We present results of a multi-site photometric campaign on the high-amplitude $delta$,Scuti star KIC,6382916 in the {it Kepler} field. The star was observed over a 85-d interval at five different sites in North America and Europe during 2011. {it Kepler} photometry and ground-based multicolour light curves of KIC,6382916 are used to investigate the pulsational content and to identify the principal modes. High-dispersion spectroscopy was also obtained in order to derive the stellar parameters and projected rotational velocity. From an analysis of the {it Kepler} time series, three independent frequencies and a few hundred combination frequencies are found. The light curve is dominated by two modes with frequencies $f_{1}$= 4.9107 and $f_{2}$= 6.4314,d$^{-1}$. The third mode with $f_{3}$= 8.0350,d$^{-1}$ has a much lower amplitude. We attempt mode identification by examining the amplitude ratios and phase differences in different wavebands from multicolour photometry and comparing them to calculations for different spherical harmonic degree, $l$. We find that the theoretical models for $f_1$ and $f_2$ are in a best agreement with the observations and lead to value of l = 1 modes, but the mode identification of $f_3$ is uncertain due to its low amplitude. Non-adiabatic pulsation models show that frequencies below 6,d$^{-1}$ are stable, which means that the low frequency of $f_1$ cannot be reproduced. This is further confirmation that current models predict a narrower pulsation frequency range than actually observed.
PDS 110 is a young disk-hosting star in the Orion OB1A association. Two dimming events of similar depth and duration were seen in 2008 (WASP) and 2011 (KELT), consistent with an object in a closed periodic orbit. In this paper we present data from a ground-based observing campaign designed to measure the star both photometrically and spectroscopically during the time of predicted eclipse in September 2017. Despite high-quality photometry, the predicted eclipse did not occur, although coherent structure is present suggesting variable amounts of stellar flux or dust obscuration. We also searched for RV oscillations caused by any hypothetical companion and can rule out close binaries to 0.1 $M_odot$. A search of Sonneberg plate archive data also enabled us to extend the photometric baseline of this star back more than 50 years, and similarly does not re-detect any deep eclipses. Taken together, they suggest that the eclipses seen in WASP and KELT photometry were due to aperiodic events. It would seem that PDS 110 undergoes stochastic dimmings that are shallower and shorter-duration than those of UX Ori variables, but may have a similar mechanism.
We present an analysis of photometric observations of the eclipsing novalike variable DW UMa made by the CBA consortium between 1999 and 2015. Analysis of 372 new and 260 previously published eclipse timings reveals a 13.6 year period or quasi-period in the times of minimum light. The seasonal light curves show a complex spectrum of periodic signals: both positive and negative superhumps, likely arising from a prograde apsidal precession and a retrograde nodal precession of the accretion disc. These signals appear most prominently and famously as sidebands of the orbital frequency but the precession frequencies themselves, at 0.40 and 0.22 cycles per day, are also seen directly in the power spectrum. The superhumps are sometimes seen together and sometimes separately. The depth, width and skew of eclipses are all modulated in phase with both nodal and apsidal precession of the tilted and eccentric accretion disc. The superhumps, or more correctly the precessional motions which produce them, may be essential to understanding the mysterious SW Sextantis syndrome. Disc wobble and eccentricity can both produce Doppler signatures inconsistent with the true dynamical motions in the binary, and disc wobble might boost the mass-transfer rate by enabling the hot white dwarf to directly irradiate the secondary star.
CONTEXT: Recent progress in the seismic interpretation of field beta Cep stars has resulted in improvements of the physics in the stellar structure and evolution models of massive stars. Further asteroseismic constraints can be obtained from studying ensembles of stars in a young open cluster, which all have similar age, distance and chemical composition. AIMS: To improve our comprehension of the beta Cep stars, we studied the young open cluster NGC 884 to discover new B-type pulsators, besides the two known beta Cep stars, and other variable stars. METHODS: An extensive multi-site campaign was set up to gather accurate CCD photometry time series in four filters (U, B, V, I) of a field of NGC884. Fifteen different instruments collected almost 77500 CCD images in 1286 hours. The images were calibrated and reduced to transform the CCD frames into interpretable differential light curves. Various variability indicators and frequency analyses were applied to detect variable stars in the field. Absolute photometry was taken to deduce some general cluster and stellar properties. RESULTS: We achieved an accuracy for the brightest stars of 5.7 mmag in V, 6.9 mmag in B, 5.0 mmag in I and 5.3 mmag in U. The noise level in the amplitude spectra is 50 micromag in the V band. Our campaign confirms the previously known pulsators, and we report more than one hundred new multi- and mono-periodic B-, A- and F-type stars. Their interpretation in terms of classical instability domains is not straightforward, pointing to imperfections in theoretical instability computations. In addition, we have discovered six new eclipsing binaries and four candidates as well as other irregular variable stars in the observed field.
210 - S. Geier , T. Kupfer , U. Heber 2015
The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims to find sdBs with compact companions like massive white dwarfs, neutron stars or black holes. Here we provide classifications, atmospheric parameters and a complete radial velocity (RV) catalogue containing 1914 single measurements for an sample of 177 hot subluminous stars discovered based on SDSS DR7. 110 stars show significant RV variability, while 67 qualify as candidates. We constrain the fraction of close massive compact companions {of hydrogen-rich hot subdwarfs} in our sample to be smaller than $sim1.3%$, which is already close to the theoretical predictions. However, the sample might still contain such binaries with longer periods exceeding $sim8,{rm d}$. We detect a mismatch between the $Delta RV_{rm max}$-distribution of the sdB and the more evolved sdOB and sdO stars, which challenges our understanding of their evolutionary connection. Furthermore, irregular RV variations of unknown origin with amplitudes of up to $sim180,{rm km,s^{-1}}$ on timescales of years, days and even hours have been detected in some He-sdO stars. They might be connected to irregular photometric variations in some cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا