Do you want to publish a course? Click here

Exponential random graph models for the Japanese bipartite network of banks and firms

113   0   0.0 ( 0 )
 Added by Abhijit Chakraborty
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the exponential random graph models to understand the network structure and its generative process for the Japanese bipartite network of banks and firms. One of the well known and simple model of exponential random graph is the Bernoulli model which shows the links in the bank-firm network are not independent from each other. Another popular exponential random graph model, the two star model, indicates that the bank-firms are in a state where macroscopic variables of the system can show large fluctuations. Moreover, the presence of high fluctuations reflect a fragile nature of the bank-firm network.



rate research

Read More

Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of $O(N)$ non-linear, coupled equations (with $N$ being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newtons method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newtons method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work.
Exponential-family random graph models (ERGMs) provide a principled way to model and simulate features common in human social networks, such as propensities for homophily and friend-of-a-friend triad closure. We show that, without adjustment, ERGMs preserve density as network size increases. Density invariance is often not appropriate for social networks. We suggest a simple modification based on an offset which instead preserves the mean degree and accommodates changes in network composition asymptotically. We demonstrate that this approach allows ERGMs to be applied to the important situation of egocentrically sampled data. We analyze data from the National Health and Social Life Survey (NHSLS).
We introduce two models of inclusion hierarchies: Random Graph Hierarchy (RGH) and Limited Random Graph Hierarchy (LRGH). In both models a set of nodes at a given hierarchy level is connected randomly, as in the ErdH{o}s-R{e}nyi random graph, with a fixed average degree equal to a system parameter $c$. Clusters of the resulting network are treated as nodes at the next hierarchy level and they are connected again at this level and so on, until the process cannot continue. In the RGH model we use all clusters, including those of size $1$, when building the next hierarchy level, while in the LRGH model clusters of size $1$ stop participating in further steps. We find that in both models the number of nodes at a given hierarchy level $h$ decreases approximately exponentially with $h$. The height of the hierarchy $H$, i.e. the number of all hierarchy levels, increases logarithmically with the system size $N$, i.e. with the number of nodes at the first level. The height $H$ decreases monotonically with the connectivity parameter $c$ in the RGH model and it reaches a maximum for a certain $c_{max}$ in the LRGH model. The distribution of separate cluster sizes in the LRGH model is a power law with an exponent about $-1.25$. The above results follow from approximate analytical calculations and have been confirmed by numerical simulations.
Exponential-family random graph models (ERGMs) provide a principled and flexible way to model and simulate features common in social networks, such as propensities for homophily, mutuality, and friend-of-a-friend triad closure, through choice of model terms (sufficient statistics). However, those ERGMs modeling the more complex features have, to date, been limited to binary data: presence or absence of ties. Thus, analysis of valued networks, such as those where counts, measurements, or ranks are observed, has necessitated dichotomizing them, losing information and introducing biases. In this work, we generalize ERGMs to valued networks. Focusing on modeling counts, we formulate an ERGM for networks whose ties are counts and discuss issues that arise when moving beyond the binary case. We introduce model terms that generalize and model common social network features for such data and apply these methods to a network dataset whose values are counts of interactions.
Exponential family Random Graph Models (ERGMs) can be viewed as expressing a probability distribution on graphs arising from the action of competing social forces that make ties more or less likely, depending on the state of the rest of the graph. Such forces often lead to a complex pattern of dependence among edges, with non-trivial large-scale structures emerging from relatively simple local mechanisms. While this provides a powerful tool for probing macro-micro connections, much remains to be understood about how local forces shape global outcomes. One simple question of this type is that of the conditions needed for social forces to stabilize a particular structure. We refer to this property as local stability and seek a general means of identifying the set of parameters under which a target graph is locally stable with respect to a set of alternatives. Here, we provide a complete characterization of the region of the parameter space inducing local stability, showing it to be the interior of a convex cone whose faces can be derived from the change-scores of the sufficient statistics vis-a-vis the alternative structures. As we show, local stability is a necessary but not sufficient condition for more general notions of stability, the latter of which can be explored more efficiently by using the ``stable cone within the parameter space as a starting point. In addition, we show how local stability can be used to determine whether a fitted model implies that an observed structure would be expected to arise primarily from the action of social forces, versus by merit of the model permitting a large number of high probability structures, of which the observed structure is one. We also use our approach to identify the dyads within a given structure that are the least stable, and hence predicted to have the highest probability of changing over time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا