Do you want to publish a course? Click here

Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints

122   0   0.0 ( 0 )
 Added by Tiziano Squartini
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of $O(N)$ non-linear, coupled equations (with $N$ being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newtons method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newtons method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work.



rate research

Read More

We use the exponential random graph models to understand the network structure and its generative process for the Japanese bipartite network of banks and firms. One of the well known and simple model of exponential random graph is the Bernoulli model which shows the links in the bank-firm network are not independent from each other. Another popular exponential random graph model, the two star model, indicates that the bank-firms are in a state where macroscopic variables of the system can show large fluctuations. Moreover, the presence of high fluctuations reflect a fragile nature of the bank-firm network.
Exponential family Random Graph Models (ERGMs) can be viewed as expressing a probability distribution on graphs arising from the action of competing social forces that make ties more or less likely, depending on the state of the rest of the graph. Such forces often lead to a complex pattern of dependence among edges, with non-trivial large-scale structures emerging from relatively simple local mechanisms. While this provides a powerful tool for probing macro-micro connections, much remains to be understood about how local forces shape global outcomes. One simple question of this type is that of the conditions needed for social forces to stabilize a particular structure. We refer to this property as local stability and seek a general means of identifying the set of parameters under which a target graph is locally stable with respect to a set of alternatives. Here, we provide a complete characterization of the region of the parameter space inducing local stability, showing it to be the interior of a convex cone whose faces can be derived from the change-scores of the sufficient statistics vis-a-vis the alternative structures. As we show, local stability is a necessary but not sufficient condition for more general notions of stability, the latter of which can be explored more efficiently by using the ``stable cone within the parameter space as a starting point. In addition, we show how local stability can be used to determine whether a fitted model implies that an observed structure would be expected to arise primarily from the action of social forces, versus by merit of the model permitting a large number of high probability structures, of which the observed structure is one. We also use our approach to identify the dyads within a given structure that are the least stable, and hence predicted to have the highest probability of changing over time.
The irreversibility of trajectories in stochastic dynamical systems is linked to the structure of their causal representation in terms of Bayesian networks. We consider stochastic maps resulting from a time discretization with interval tau of signal-response models, and we find an integral fluctuation theorem that sets the backward transfer entropy as a lower bound to the conditional entropy production. We apply this to a linear signal-response model providing analytical solutions, and to a nonlinear model of receptor-ligand systems. We show that the observational time tau has to be fine-tuned for an efficient detection of the irreversibility in time-series.
We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a and variance va. These two control parameters determine if the avalanche size tends to a stationary distribution, (Finite Scale statistics with finite mean and variance or Power-Law tailed statistics with exponent in (1, 3]), or instead to a non-stationary regime with Log-Normal statistics. Numerical results and their statistical analysis are presented for a uniformly distributed growth rate, which are corroborated and generalized by analytical results. The latter show that the numerically observed avalanche regimes exist for a wide family of growth rate distributions and provide a precise definition of the boundaries between the three regimes.
The subjects of the paper are the likelihood method (LM) and the expected Fisher information (FI) considered from the point od view of the construction of the physical models which originate in the statistical description of phenomena. The master equation case and structural information principle are derived. Then, the phenomenological description of the information transfer is presented. The extreme physical information (EPI) method is reviewed. As if marginal, the statistical interpretation of the amplitude of the system is given. The formalism developed in this paper would be also applied in quantum information processing and quantum game theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا