No Arabic abstract
We report stimulated Raman spectroscopy of the G phonon in both single and multi-layer graphene, through Coherent anti-Stokes Raman Scattering (CARS). The signal generated by the third order nonlinearity is dominated by a vibrationally non-resonant background (NVRB), which obscures the Raman lineshape. We demonstrate that the vibrationally resonant CARS peak can be measured by reducing the temporal overlap of the laser excitation pulses, suppressing the NVRB. We model the observed spectra, taking into account the electronically resonant nature of both CARS and NVRB. We show that CARS can be used for graphene imaging with vibrational sensitivity.
The equilibrium optical phonons of graphene are well characterized in terms of anharmonicity and electron-phonon interactions, however their non-equilibrium properties in the presence of hot charge carriers are still not fully explored. Here we study the Raman spectrum of graphene under ultrafast laser excitation with 3ps pulses, which trade off between impulsive stimulation and spectral resolution. We localize energy into hot carriers, generating non-equilibrium temperatures in the ~1700-3100K range, far exceeding that of the phonon bath, while simultaneously detecting the Raman response. The linewidth of both G and 2D peaks show an increase as function of the electronic temperature. We explain this as a result of the Dirac cones broadening and electron-phonon scattering in the highly excited transient regime, important for the emerging field of graphene-based photonics and optoelectronics.
Coherent Raman scattering spectroscopy is studied purposely, with the Gaussian ultrashort pulses as a hands-on elucidatory extraction tool of the clean coherent Raman resonant spectra from the overall measured data contaminated with the non-resonant four wave mixing background. The integral formulae for both the coherent anti-Stokes and Stokes Raman scattering are given in the semiclassical picture, and the closed-form solutions in terms of a complex error function are obtained. An analytic form of maximum enhancement of pure coherent Raman spectra at threshold time delay depending on bandwidth of probe pulse is also obtained. The observed experimental data for pyridine in liquid-phase are quantitatively elucidated and the inferred time-resolved coherent Raman resonant results are reconstructed with a new insight.
We present a systematic Raman study of unconventionally-stacked double-layer graphene, and find that the spectrum strongly depends on the relative rotation angle between layers. Rotation-dependent trends in the position, width and intensity of graphene 2D and G peaks are experimentally established and accounted for theoretically. Our theoretical analysis reveals that changes in electronic band structure due to the interlayer interaction, such as rotational-angle dependent Van Hove singularities, are responsible for the observed spectra features. Our combined experimental and theoretical study provides a deeper understanding of the electronic band structure of rotated double-layer graphene, and leads to a practical way to identify and analyze rotation angles of misoriented double-layer graphene.
Since its first demonstration in the sixties, coherent anti-Stokes Raman scattering (CARS) has become a powerful spectroscopic sensing tool with broad applications in biology and chemistry. However, it is a complex nonlinear optical process that often leads to the lacks of quantitative data outputs. In this letter, we observe how CARS signal builds up gradually and demonstrate how to control its deferral with laser-pulse shaping. A time-resolved three-color CARS that involves a pair of driving broadband femtosecond pulses and delayed shaped probe pulse is realized experimentally. Driving pulses are tuned to the Raman-resonance onto the vibrational ring modes of pyridine and benzene molecules. As a result, CARS-buildup is deferred in picoseconds as delayed probe pulse width varies from 50 down to 10 cm-1. With off-resonant driving of water molecules this effect, in contrary, does not occur. Laser control predicting deferred resonant processes can serve as a novel and important species-specific indicator in, e.g., machine learning applications for future nonlinear optical spectroscopy.
We report multiphonon Raman scattering in graphene samples. Higher order combination modes involving 3 phonons and 4 phonons are observed in single-layer (SLG), bi-layer (BLG), and few layer (FLG) graphene samples prepared by mechanical exfoliation. The intensity of the higher order phonon modes (relative to the G peak) is highest in SLG and decreases with increasing layers. In addition, all higher order modes are observed to upshift in frequency almost linearly with increasing graphene layers, betraying the underlying interlayer van der Waals interactions.