No Arabic abstract
We present a systematic Raman study of unconventionally-stacked double-layer graphene, and find that the spectrum strongly depends on the relative rotation angle between layers. Rotation-dependent trends in the position, width and intensity of graphene 2D and G peaks are experimentally established and accounted for theoretically. Our theoretical analysis reveals that changes in electronic band structure due to the interlayer interaction, such as rotational-angle dependent Van Hove singularities, are responsible for the observed spectra features. Our combined experimental and theoretical study provides a deeper understanding of the electronic band structure of rotated double-layer graphene, and leads to a practical way to identify and analyze rotation angles of misoriented double-layer graphene.
We study electronic contribution to the Raman scattering signals of two-, three- and four-layer graphene with layers at one of the interfaces twisted by a small angle with respect to each other. We find that the Raman spectra of these systems feature two peaks produced by van Hove singularities in moir{e} minibands of twistronic graphene, one related to direct hybridization of Dirac states, and the other resulting from band folding caused by moir{e} superlattice. The positions of both peaks strongly depend on the twist angle, so that their detection can be used for non-invasive characterization of the twist, even in hBN-encapsulated structures.
We report stimulated Raman spectroscopy of the G phonon in both single and multi-layer graphene, through Coherent anti-Stokes Raman Scattering (CARS). The signal generated by the third order nonlinearity is dominated by a vibrationally non-resonant background (NVRB), which obscures the Raman lineshape. We demonstrate that the vibrationally resonant CARS peak can be measured by reducing the temporal overlap of the laser excitation pulses, suppressing the NVRB. We model the observed spectra, taking into account the electronically resonant nature of both CARS and NVRB. We show that CARS can be used for graphene imaging with vibrational sensitivity.
Quantum confinement endows two-dimensional (2D) layered materials with exceptional physics and novel properties compared to their bulk counterparts. Although certain two- and few-layer configurations of graphene have been realized and studied, a systematic investigation of the properties of arbitrarily layered graphene assemblies is still lacking. We introduce theoretical concepts and methods for the processing of materials information, and as a case study, apply them to investigate the electronic structure of multi-layer graphene-based assemblies in a high-throughput fashion. We provide a critical discussion of patterns and trends in tight binding band structures and we identify specific layered assemblies using low-dispersion electronic bands as indicators of potentially interesting physics like strongly correlated behavior. A combination of data-driven models for visualization and prediction is used to intelligently explore the materials space. This work more generally aims to increase confidence in the combined use of physics-based and data-driven modeling for the systematic refinement of knowledge about 2D layered materials, with implications for the development of novel quantum devices.
Electronic structures of graphene sheet with different defective patterns are investigated, based on the first principles calculations. We find that defective patterns can tune the electronic structures of the graphene significantly. Triangle patterns give rise to strongly localized states near the Fermi level, and hexagonal patterns open up band gaps in the systems. In addition, rectangular patterns, which feature networks of graphene nanoribbons with either zigzag or armchair edges, exhibit semiconducting behaviors, where the band gap has an evident dependence on the width of the nanoribbons. For the networks of the graphene nanoribbons, some special channels for electronic transport are predicted.
Bi-layer graphene with a twist angle theta between the layers generates a superlattice structure known as Moir{e} pattern. This superlattice provides a theta-dependent q wavevector that activates phonons in the interior of the Brillouin zone. Here we show that this superlattice-induced Raman scattering can be used to probe the phonon dispersion in twisted bi-layer graphene (tBLG). The effect reported here is different from the broadly studied double-resonance in graphene-related materials in many aspects, and despite the absence of stacking order in tBLG, layer breathing vibrations (namely ZO phonons) are observed.