Do you want to publish a course? Click here

Formation of RbCs dimers using an elliptically polarized laser pulse

177   0   0.0 ( 0 )
 Added by Cristel Chandre
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the formation of RbCs by an elliptically polarized laser pulse. By varying the ellipticity of the laser for sufficiently large laser intensity, we see that the formation probability presents a strong dependence, especially around ellipticity 1/ $sqrt$ 2. We show that the analysis can be reduced to the investigation of the long-range interaction between the two atoms. The formation is mainly due to a small momentum shifts induced by the laser pulse. We analyze these results using the Silbersteins expressions of the polarizabilities, and show that the ellipticity of the field acts as a control knob for the formation probability, allowing significant variations of the dimer formation probability at a fixed laser intensity, especially in the region around an ellipticity of 1/ $sqrt$ 2.



rate research

Read More

Increasing ellipticity usually suppresses the recollision probability drastically. In contrast, we report on a recollision channel with large return energy and a substantial probability, regardless of the ellipticity. The laser envelope plays a dominant role in the energy gained by the electron, and in the conditions under which the electron comes back to the core. We show that this recollision channel eciently triggers multiple ionization with an elliptically polarized pulse.
We study the higher-harmonic generation (HHG) using elliptically polarized two-color driving fields. The HHG via bi-chromatic counter-rotating laser fields is a promising source of circularly polarized ultrashort XUV radiation at the attosecond time scale. The ellipticity or the polarization of the attosecond pulses can be tweaked by modifying the emitted harmonics ellipticity, which can be controlled by varying the driver fields. We propose a simple setup to control the polarization of the driving fields, which eventually changes the ellipticity of the attosecond pulses. A well-defined scaling law for the ellipticity of the attosecond pulse as a function of the rotation angle of the quarter-wave plate is also deduced by solving the time-dependent Schrodinger equation (TDSE) in two dimensions. The scaling law can further be explored to obtain the attosecond pulses of the desired degree of polarization, ranging from linear to elliptical to circular polarization.
367 - J. Dubois , C. Chandre , T. Uzer 2020
We study the double ionization of atoms subjected to circularly polarized (CP) laser pulses. We analyze two fundamental ionization processes: the sequential (SDI) and non-sequential (NSDI) double ionization in the light of the rotating frame (RF) which naturally embeds nonadiabatic effects in CP pulses. We use and compare two adiabatic approximations: The adiabatic approximation in the laboratory frame (LF) and the adiabatic approximation in the RF. The adiabatic approximation in the RF encapsulates the energy variations of the electrons on subcycle timescales happening in the LF and this, by fully taking into account the ion-electron interaction. This allows us to identify two nonadiabatic effects including the lowering of the threshold intensity at which over-the-barrier ionization happens and the lowering of the ionization time of the electrons. As a consequence, these nonadiabatic effects facilitate over-the-barrier ionization and recollision-induced ionizations. We analyze the outcomes of these nonadiabatic effects on the recollision mechanism. We show that the laser envelope plays an instrumental role in a recollision channel in CP pulses at the heart of NSDI.
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the sub-cycle dynamics of the recollision process. Our work reveals a general physical picture for recollision-impact double ionization with elliptical polarization, and demonstrates the possibility of ultrafast control of the recollision dynamics.
Employing recent developed magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) combining cold atom, strong laser pulse, and ultrafast technologies, we study momentum distributions of the multiply ionized cold rubidium (Rb) induced by the elliptically polarized laser pulses (35 fs, $1.3 times 10^{15}$ W/cm$^2$). The complete vector momenta of Rbn+ ions up to charge state n = 4 are recorded with extremely high resolution (0.12 a.u. for Rb$^+$). Variations of characteristic multi-bands displayed in momentum distributions, as the ellipticity varies from the linear to circular polarization, are interpreted qualitatively with the classical over-barrier ionization model. Present momentum spectroscopy of cold heavy alkali atoms presents novel strong-field phenomena beyond the noble gases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا