No Arabic abstract
Human-robot teaming is one of the most important applications of artificial intelligence in the fast-growing field of robotics. For effective teaming, a robot must not only maintain a behavioral model of its human teammates to project the team status, but also be aware that its human teammates expectation of itself. Being aware of the human teammates expectation leads to robot behaviors that better align with human expectation, thus facilitating more efficient and potentially safer teams. Our work addresses the problem of human-robot cooperation with the consideration of such teammate models in sequential domains by leveraging the concept of plan explicability. In plan explicability, however, the human is considered solely as an observer. In this paper, we extend plan explicability to consider interactive settings where human and robot behaviors can influence each other. We term this new measure as Interactive Plan Explicability. We compare the joint plan generated with the consideration of this measure using the fast forward planner (FF) with the plan created by FF without such consideration, as well as the plan created with actual human subjects. Results indicate that the explicability score of plans generated by our algorithm is comparable to the human plan, and better than the plan created by FF without considering the measure, implying that the plans created by our algorithms align better with expected joint plans of the human during execution. This can lead to more efficient collaboration in practice.
This record contains the proceedings of the 2020 Workshop on Assessing, Explaining, and Conveying Robot Proficiency for Human-Robot Teaming, which was held in conjunction with the 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI). This workshop was originally scheduled to occur in Cambridge, UK on March 23, but was moved to a set of online talks due to the COVID-19 pandemic.
Teamwork is a set of interrelated reasoning, actions and behaviors of team members that facilitate common objectives. Teamwork theory and experiments have resulted in a set of states and processes for team effectiveness in both human-human and agent-agent teams. However, human-agent teaming is less well studied because it is so new and involves asymmetry in policy and intent not present in human teams. To optimize team performance in human-agent teaming, it is critical that agents infer human intent and adapt their polices for smooth coordination. Most literature in human-agent teaming builds agents referencing a learned human model. Though these agents are guaranteed to perform well with the learned model, they lay heavy assumptions on human policy such as optimality and consistency, which is unlikely in many real-world scenarios. In this paper, we propose a novel adaptive agent architecture in human-model-free setting on a two-player cooperative game, namely Team Space Fortress (TSF). Previous human-human team research have shown complementary policies in TSF game and diversity in human players skill, which encourages us to relax the assumptions on human policy. Therefore, we discard learning human models from human data, and instead use an adaptation strategy on a pre-trained library of exemplar policies composed of RL algorithms or rule-based methods with minimal assumptions of human behavior. The adaptation strategy relies on a novel similarity metric to infer human policy and then selects the most complementary policy in our library to maximize the team performance. The adaptive agent architecture can be deployed in real-time and generalize to any off-the-shelf static agents. We conducted human-agent experiments to evaluate the proposed adaptive agent framework, and demonstrated the suboptimality, diversity, and adaptability of human policies in human-agent teams.
Generating explanation to explain its behavior is an essential capability for a robotic teammate. Explanations help human partners better understand the situation and maintain trust of their teammates. Prior work on robot generating explanations focuses on providing the reasoning behind its decision making. These approaches, however, fail to heed the cognitive requirement of understanding an explanation. In other words, while they provide the right explanations from the explainers perspective, the explainee part of the equation is ignored. In this work, we address an important aspect along this direction that contributes to a better understanding of a given explanation, which we refer to as the progressiveness of explanations. A progressive explanation improves understanding by limiting the cognitive effort required at each step of making the explanation. As a result, such explanations are expected to be smoother and hence easier to understand. A general formulation of progressive explanation is presented. Algorithms are provided based on several alternative quantifications of cognitive effort as an explanation is being made, which are evaluated in a standard planning competition domain.
As AI becomes an integral part of our lives, the development of explainable AI, embodied in the decision-making process of an AI or robotic agent, becomes imperative. For a robotic teammate, the ability to generate explanations to justify its behavior is one of the key requirements of explainable agency. Prior work on explanation generation has been focused on supporting the rationale behind the robots decision or behavior. These approaches, however, fail to consider the mental demand for understanding the received explanation. In other words, the human teammate is expected to understand an explanation no matter how much information is presented. In this work, we argue that explanations, especially those of a complex nature, should be made in an online fashion during the execution, which helps spread out the information to be explained and thus reduce the mental workload of humans in highly cognitive demanding tasks. However, a challenge here is that the different parts of an explanation may be dependent on each other, which must be taken into account when generating online explanations. To this end, a general formulation of online explanation generation is presented with three variations satisfying different online properties. The new explanation generation methods are based on a model reconciliation setting introduced in our prior work. We evaluated our methods both with human subjects in a simulated rover domain, using NASA Task Load Index (TLX), and synthetically with ten different problems across two standard IPC domains. Results strongly suggest that our methods generate explanations that are perceived as less cognitively demanding and much preferred over the baselines and are computationally efficient.
In this paper, we propose the Interactive Text2Pickup (IT2P) network for human-robot collaboration which enables an effective interaction with a human user despite the ambiguity in users commands. We focus on the task where a robot is expected to pick up an object instructed by a human, and to interact with the human when the given instruction is vague. The proposed network understands the command from the human user and estimates the position of the desired object first. To handle the inherent ambiguity in human language commands, a suitable question which can resolve the ambiguity is generated. The users answer to the question is combined with the initial command and given back to the network, resulting in more accurate estimation. The experiment results show that given unambiguous commands, the proposed method can estimate the position of the requested object with an accuracy of 98.49% based on our test dataset. Given ambiguous language commands, we show that the accuracy of the pick up task increases by 1.94 times after incorporating the information obtained from the interaction.