Do you want to publish a course? Click here

Order, Chaos and (Quasi-) Dynamical Symmetries across 1st-order Quantum Phase Transitions in Nuclei

105   0   0.0 ( 0 )
 Added by Michal Macek
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

First order quantum phase transition (QPT) between spherical and axially deformed nuclei shows coexisting, but well-separated regions of regular and chaotic dynamics. We employ a Hamiltonian of the Arima-Iachello Interacting Boson Model (IBM) with an arbitrarily high potential barrier separating the phases. Classical and quantum analyses reveal markedly distinct behavior of the two phases: Deformed phase is completely regular, while the spherical phase shows highly chaotic dynamics, similar to the Henon-Heiles system. Rotational bands with quasi-SU(3) characteristics built upon the regular vibrational spectrum of beta- and gamma-vibrations are observed in the deformed phase up to very high excitation energies.



rate research

Read More

176 - A. Leviatan , M. Macek 2014
We study the competing order and chaos in a first-order quantum phase transition with a high barrier. The boson model Hamiltonian employed, interpolates between its U(5) (spherical) and SU(3) (deformed) limits. A classical analysis reveals regular (chaotic) dynamics at low (higher) energy in the spherical region, coexisting with a robustly regular dynamics in the deformed region. A quantum analysis discloses, amidst a complicated environment, persisting regular multiplets of states associated with partial U(5) and quasi SU(3) dynamical symmetries.
165 - A. Leviatan , M. Macek 2012
We study the nature of the dynamics in a first-order quantum phase transition between spherical and prolate-deformed nuclear shapes. Classical and quantum analyses reveal a change in the system from a chaotic Henon-Heiles behavior on the spherical side into a pronounced regular dynamics on the deformed side. Both order and chaos persist in the coexistence region and their interplay reflects the Landau potential landscape and the impact of collective rotations.
132 - A. Leviatan , M. Macek 2012
We study the evolution of the dynamics across a generic first order quantum phase transition in an interacting boson model of nuclei. The dynamics inside the phase coexistence region exhibits a very simple pattern. A classical analysis reveals a robustly regular dynamics confined to the deformed region and well separated from a chaotic dynamics ascribed to the spherical region. A quantum analysis discloses regular bands of states in the deformed region, which persist to energies well above the phase-separating barrier, in the face of a complicated environment. The impact of kinetic collective rotational terms on this intricate interplay of order and chaos is investigated.
368 - Roelof Bijker 2019
It is shown that the rotational band structure of the cluster states in 12C and 16O can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles. Finally, some first results are presented for odd-cluster nuclei.
Background: Quasi dynamical symmetries (QDS) and partial dynamical symmetries (PDS) play an important role in the understanding of complex systems. Up to now these symmetry concepts have been considered to be unrelated. Purpose: Establish a link between PDS and QDS and find an emperical manifestation. Methods: Quantum number fluctuations and the intrinsic state formalism are used within the framework of the interacting boson model of nuclei. Results: A previously unrecognized region of the parameter space of the interacting boson model that has both O(6) PDS (purity) and SU(3) QDS (coherence) in the ground band is established. Many rare-earth nuclei approximately satisfying both symmetry requirements are identified. Conclusions: PDS are more abundant than previously recognized and can lead to a QDS of an incompatible symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا