Do you want to publish a course? Click here

Image Based Review Text Generation with Emotional Guidance

186   0   0.0 ( 0 )
 Added by Zihan Zhou
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In the current field of computer vision, automatically generating texts from given images has been a fully worked technique. Up till now, most works of this area focus on image content describing, namely image-captioning. However, rare researches focus on generating product review texts, which is ubiquitous in the online shopping malls and is crucial for online shopping selection and evaluation. Different from content describing, review texts include more subjective information of customers, which may bring difference to the results. Therefore, we aimed at a new field concerning generating review text from customers based on images together with the ratings of online shopping products, which appear as non-image attributes. We made several adjustments to the existing image-captioning model to fit our task, in which we should also take non-image features into consideration. We also did experiments based on our model and get effective primary results.



rate research

Read More

This paper studies constrained text generation, which is to generate sentences under certain pre-conditions. We focus on CommonGen, the task of generating text based on a set of concepts, as a representative task of constrained text generation. Traditional methods mainly rely on supervised training to maximize the likelihood of target sentences.However, global constraints such as common sense and coverage cannot be incorporated into the likelihood objective of the autoregressive decoding process. In this paper, we consider using reinforcement learning to address the limitation, measuring global constraints including fluency, common sense and concept coverage with a comprehensive score, which serves as the reward for reinforcement learning. Besides, we design a guided decoding method at the word, fragment and sentence levels. Experiments demonstrate that our method significantly increases the concept coverage and outperforms existing models in various automatic evaluations.
As a natural language generation task, it is challenging to generate informative and coherent review text. In order to enhance the informativeness of the generated text, existing solutions typically learn to copy entities or triples from knowledge graphs (KGs). However, they lack overall consideration to select and arrange the incorporated knowledge, which tends to cause text incoherence. To address the above issue, we focus on improving entity-centric coherence of the generated reviews by leveraging the semantic structure of KGs. In this paper, we propose a novel Coherence Enhanced Text Planning model (CETP) based on knowledge graphs (KGs) to improve both global and local coherence for review generation. The proposed model learns a two-level text plan for generating a document: (1) the document plan is modeled as a sequence of sentence plans in order, and (2) the sentence plan is modeled as an entity-based subgraph from KG. Local coherence can be naturally enforced by KG subgraphs through intra-sentence correlations between entities. For global coherence, we design a hierarchical self-attentive architecture with both subgraph- and node-level attention to enhance the correlations between subgraphs. To our knowledge, we are the first to utilize a KG-based text planning model to enhance text coherence for review generation. Extensive experiments on three datasets confirm the effectiveness of our model on improving the content coherence of generated texts.
Word representation is a fundamental component in neural language understanding models. Recently, pre-trained language models (PrLMs) offer a new performant method of contextualized word representations by leveraging the sequence-level context for modeling. Although the PrLMs generally give more accurate contextualized word representations than non-contextualized models do, they are still subject to a sequence of text contexts without diverse hints for word representation from multimodality. This paper thus proposes a visual representation method to explicitly enhance conventional word embedding with multiple-aspect senses from visual guidance. In detail, we build a small-scale word-image dictionary from a multimodal seed dataset where each word corresponds to diverse related images. The texts and paired images are encoded in parallel, followed by an attention layer to integrate the multimodal representations. We show that the method substantially improves the accuracy of disambiguation. Experiments on 12 natural language understanding and machine translation tasks further verify the effectiveness and the generalization capability of the proposed approach.
There has been significant interest recently in learning multilingual word embeddings -- in which semantically similar words across languages have similar embeddings. State-of-the-art approaches have relied on expensive labeled data, which is unavailable for low-resource languages, or have involved post-hoc unification of monolingual embeddings. In the present paper, we investigate the efficacy of multilingual embeddings learned from weakly-supervised image-text data. In particular, we propose methods for learning multilingual embeddings using image-text data, by enforcing similarity between the representations of the image and that of the text. Our experiments reveal that even without using any expensive labeled data, a bag-of-words-based embedding model trained on image-text data achieves performance comparable to the state-of-the-art on crosslingual semantic similarity tasks.
308 - Jaemin Cho , Jie Lei , Hao Tan 2021
Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expression comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on questions that have rare answers. Also, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, achieving similar performance to separately optimized single-task models. Our code is publicly available at: https://github.com/j-min/VL-T5

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا