Do you want to publish a course? Click here

Accurate Word Representations with Universal Visual Guidance

124   0   0.0 ( 0 )
 Added by Zhuosheng Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Word representation is a fundamental component in neural language understanding models. Recently, pre-trained language models (PrLMs) offer a new performant method of contextualized word representations by leveraging the sequence-level context for modeling. Although the PrLMs generally give more accurate contextualized word representations than non-contextualized models do, they are still subject to a sequence of text contexts without diverse hints for word representation from multimodality. This paper thus proposes a visual representation method to explicitly enhance conventional word embedding with multiple-aspect senses from visual guidance. In detail, we build a small-scale word-image dictionary from a multimodal seed dataset where each word corresponds to diverse related images. The texts and paired images are encoded in parallel, followed by an attention layer to integrate the multimodal representations. We show that the method substantially improves the accuracy of disambiguation. Experiments on 12 natural language understanding and machine translation tasks further verify the effectiveness and the generalization capability of the proposed approach.



rate research

Read More

Representing the semantics of words is a long-standing problem for the natural language processing community. Most methods compute word semantics given their textual context in large corpora. More recently, researchers attempted to integrate perceptual and visual features. Most of these works consider the visual appearance of objects to enhance word representations but they ignore the visual environment and context in which objects appear. We propose to unify text-based techniques with vision-based techniques by simultaneously leveraging textual and visual context to learn multimodal word embeddings. We explore various choices for what can serve as a visual context and present an end-to-end method to integrate visual context elements in a multimodal skip-gram model. We provide experiments and extensive analysis of the obtained results.
185 - Xuehui Sun , Zihan Zhou , Yuda Fan 2019
In the current field of computer vision, automatically generating texts from given images has been a fully worked technique. Up till now, most works of this area focus on image content describing, namely image-captioning. However, rare researches focus on generating product review texts, which is ubiquitous in the online shopping malls and is crucial for online shopping selection and evaluation. Different from content describing, review texts include more subjective information of customers, which may bring difference to the results. Therefore, we aimed at a new field concerning generating review text from customers based on images together with the ratings of online shopping products, which appear as non-image attributes. We made several adjustments to the existing image-captioning model to fit our task, in which we should also take non-image features into consideration. We also did experiments based on our model and get effective primary results.
Neural machine translation has achieved remarkable empirical performance over standard benchmark datasets, yet recent evidence suggests that the models can still fail easily dealing with substandard inputs such as misspelled words, To overcome this issue, we introduce a new encoding heuristic of the input symbols for character-level NLP models: it encodes the shape of each character through the images depicting the letters when printed. We name this new strategy visual embedding and it is expected to improve the robustness of NLP models because humans also process the corpus visually through printed letters, instead of machinery one-hot vectors. Empirically, our method improves models robustness against substandard inputs, even in the test scenario where the models are tested with the noises that are beyond what is available during the training phase.
Social bias in machine learning has drawn significant attention, with work ranging from demonstrations of bias in a multitude of applications, curating definitions of fairness for different contexts, to developing algorithms to mitigate bias. In natural language processing, gender bias has been shown to exist in context-free word embeddings. Recently, contextual word representations have outperformed word embeddings in several downstream NLP tasks. These word representations are conditioned on their context within a sentence, and can also be used to encode the entire sentence. In this paper, we analyze the extent to which state-of-the-art models for contextual word representations, such as BERT and GPT-2, encode biases with respect to gender, race, and intersectional identities. Towards this, we propose assessing bias at the contextual word level. This novel approach captures the contextual effects of bias missing in context-free word embeddings, yet avoids confounding effects that underestimate bias at the sentence encoding level. We demonstrate evidence of bias at the corpus level, find varying evidence of bias in embedding association tests, show in particular that racial bias is strongly encoded in contextual word models, and observe that bias effects for intersectional minorities are exacerbated beyond their constituent minority identities. Further, evaluating bias effects at the contextual word level captures biases that are not captured at the sentence level, confirming the need for our novel approach.
163 - Songwei Ge , Devi Parikh 2021
We ask the question: to what extent can recent large-scale language and image generation models blend visual concepts? Given an arbitrary object, we identify a relevant object and generate a single-sentence description of the blend of the two using a language model. We then generate a visual depiction of the blend using a text-based image generation model. Quantitative and qualitative evaluations demonstrate the superiority of language models over classical methods for conceptual blending, and of recent large-scale image generation models over prior models for the visual depiction.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا