Do you want to publish a course? Click here

Exact Classical and Quantum Solutions for a Covariant Oscillator Near the Black Hole Horizon in Stueckelberg-Horwitz-Piron Theory

76   0   0.0 ( 0 )
 Added by Davood Momeni Dr
 Publication date 2019
  fields Physics
and research's language is English
 Authors Davood Momeni




Ask ChatGPT about the research

We found exact solutions for canonical classical and quantum dynamics for general relativity in Horwitz general covarience theory. These solutions can be obtained by solving the generalized geodesic equation and Schr{o}dinger-Stueckelberg -Horwitz-Piron (SHP) wave equation for a simple harmonic oscilator in the background of a two dimensional dilaton black hole spacetime metric. We proved the existence of an orthonormal basis of eigenfunctions for generalized wave equation. This basis functions form an orthogonanl and normalized (orthonormal) basis for an appropriate Hilbert space. The energy spectrum has a mixed spectrum with one conserved momentum $p$ according to a quantum number $n$. To find the ground state energy we used a variational method with appropriate boundary conditions. A set of mode decomposed wave functions and calculated for the Stueckelberg-Schrodinger equation on a general five dimensional blackhole spacetime in Hamilton gauge.



rate research

Read More

67 - Davood Momeni 2019
Based on the Stueckelberg-Horwitz-Piron theory of covariant quantum mechanics on curved spacetime, we solved wave equation for a charged covariant harmonic oscillator in the background of charged static spherically symmetric black hole. Using Greens functions , we found asymptotic form for the wave function in the lowest mode (s-mode) and in higher moments. It has been proven that for s-wave, in a definite range of solid angles, the differential cross section depends effectively to the magnetic and electric charges of the black hole.
We describe the null geometry of a multiple black hole event horizon in terms of a conformal rescaling of a flat space null hypersurface. For the prolate spheroidal case, we show that the method reproduces the pair-of-pants shaped horizon found in the numerical simulation of the head-on-collision of black holes. For the oblate case, it reproduces the initially toroidal event horizon found in the numerical simulation of collapse of a rotating cluster. The analytic nature of the approach makes further conclusions possible, such as a bearing on the hoop conjecture. From a time reversed point of view, the approach yields a description of the past event horizon of a fissioning white hole, which can be used as null data for the characteristic evolution of the exterior space-time.
78 - Noa Zilberman , Amos Ori 2021
We analyze and compute the semiclassical stress-energy flux components, the outflux $langle T_{uu}rangle$ and the influx $langle T_{vv}rangle$ ($u$ and $v$ being the standard null Eddington coordinates), at the inner horizon (IH) of a Reissner-Nordstrom black hole (BH) of mass $M$ and charge $Q$, in the near-extremal domain in which $Q/M$ approaches $1$. We consider a minimally-coupled massless quantum scalar field, in both Hartle-Hawking ($H$) and Unruh ($U$) states, the latter corresponding to an evaporating BH. The near-extremal domain lends itself to an analytical treatment which sheds light on the behavior of various quantities on approaching extremality. We explore the behavior of the three near-IH flux quantities $langle T_{uu}^-rangle^U$, $langle T_{vv}^-rangle^U$, and $langle T_{uu}^-rangle^H=langle T_{vv}^-rangle^H$, as a function of the small parameter $Deltaequivsqrt{1-(Q/M)^2}$ (where the superscript $-$ refers to the IH value). We find that in the near-extremal domain $langle T_{uu}^-rangle^Uconglangle T_{uu}^-rangle^H=langle T_{vv}^-rangle^H$ behaves as $proptoDelta^5$. In contrast, $langle T_{vv}^-rangle^U$ behaves as $proptoDelta^4$, and we calculate the prefactor analytically. It therefore follows that the semiclassical fluxes at the IH neighborhood of an evaporating near-extremal spherical charged BH are dominated by the influx $langle T_{vv}rangle^U$. In passing, we also find an analytical expression for the transmission coefficient outside a Reissner-Nordstrom BH to leading order in small frequencies (which turns out to be a crucial ingredient of our near-extremal analysis). Furthermore, we explicitly obtain the near-extremal Hawking-evaporation rate ($proptoDelta^4$), with an analytical expression for the prefactor (obtained here for the first time to the best of our knowledge). [Abridged]
In this article, we study Beltrami equilibria for plasmas in near the horizon of a spinning black hole, and develop a framework for constructing the magnetic field profile in the near horizon limit for Clebsch flows in the single-fluid approximation. We find that the horizon profile for the magnetic field is shown to satisfy a system of first-order coupled ODEs dependent on a boundary condition for the magnetic field. For states in which the generalized vorticity vanishes (the generalized `superconducting plasma state), the horizon profile becomes independent of the boundary condition, and depend only on the thermal properties of the plasma. Our analysis makes use of the full form for the time-independent Amperes law in the 3+1 formalism, generalizing earlier conclusions for the case of vanishing vorticity, namely the complete magnetic field expulsion near the equator of an axisymmetric black horizon assuming that the thermal properties of the plasma are symmetric about the equatorial plane. For the general case, we find and discuss additional conditions required for the expulsion of magnetic fields at given points on the black hole horizon. We perform a length scale analysis which indicates the emergence of two distinct length scales characterizing the magnetic field variation and strength of the Beltrami term, respectively.
We consider dynamics of a quantum scalar field, minimally coupled to classical gravity, in the near-horizon region of a Schwarzschild black-hole. It is described by a static Klein-Gordon operator which in the near-horizon region reduces to a scale invariant Hamiltonian of the system. This Hamiltonian is not essentially self-adjoint, but it admits a one-parameter family of self-adjoint extension. The time-energy uncertainty relation, which can be related to the thermal black-hole mass fluctuations, requires explicit construction of a time operator near-horizon. We present its derivation in terms of generators of the affine group. Matrix elements involving the time operator should be evaluated in the affine coherent state representation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا