Do you want to publish a course? Click here

Non-Parametric Inference Adaptive to Intrinsic Dimension

94   0   0.0 ( 0 )
 Added by Khashayar Khosravi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We consider non-parametric estimation and inference of conditional moment models in high dimensions. We show that even when the dimension $D$ of the conditioning variable is larger than the sample size $n$, estimation and inference is feasible as long as the distribution of the conditioning variable has small intrinsic dimension $d$, as measured by locally low doubling measures. Our estimation is based on a sub-sampled ensemble of the $k$-nearest neighbors ($k$-NN) $Z$-estimator. We show that if the intrinsic dimension of the covariate distribution is equal to $d$, then the finite sample estimation error of our estimator is of order $n^{-1/(d+2)}$ and our estimate is $n^{1/(d+2)}$-asymptotically normal, irrespective of $D$. The sub-sampling size required for achieving these results depends on the unknown intrinsic dimension $d$. We propose an adaptive data-driven approach for choosing this parameter and prove that it achieves the desired rates. We discuss extensions and applications to heterogeneous treatment effect estimation.

rate research

Read More

We propose the orthogonal random forest, an algorithm that combines Neyman-orthogonality to reduce sensitivity with respect to estimation error of nuisance parameters with generalized random forests (Athey et al., 2017)--a flexible non-parametric method for statistical estimation of conditional moment models using random forests. We provide a consistency rate and establish asymptotic normality for our estimator. We show that under mild assumptions on the consistency rate of the nuisance estimator, we can achieve the same error rate as an oracle with a priori knowledge of these nuisance parameters. We show that when the nuisance functions have a locally sparse parametrization, then a local $ell_1$-penalized regression achieves the required rate. We apply our method to estimate heterogeneous treatment effects from observational data with discrete treatments or continuous treatments, and we show that, unlike prior work, our method provably allows to control for a high-dimensional set of variables under standard sparsity conditions. We also provide a comprehensive empirical evaluation of our algorithm on both synthetic and real data.
During online decision making in Multi-Armed Bandits (MAB), one needs to conduct inference on the true mean reward of each arm based on data collected so far at each step. However, since the arms are adaptively selected--thereby yielding non-iid data--conducting inference accurately is not straightforward. In particular, sample averaging, which is used in the family of UCB and Thompson sampling (TS) algorithms, does not provide a good choice as it suffers from bias and a lack of good statistical properties (e.g. asymptotic normality). Our thesis in this paper is that more sophisticated inference schemes that take into account the adaptive nature of the sequentially collected data can unlock further performance gains, even though both UCB and TS type algorithms are optimal in the worst case. In particular, we propose a variant of TS-style algorithms--which we call doubly adaptive TS--that leverages recent advances in causal inference and adaptively reweights the terms of a doubly robust estimator on the true mean reward of each arm. Through 20 synthetic domain experiments and a semi-synthetic experiment based on data from an A/B test of a web service, we demonstrate that using an adaptive inferential scheme (while still retaining the exploration efficacy of TS) provides clear benefits in online decision making: the proposed DATS algorithm has superior empirical performance to existing baselines (UCB and TS) in terms of regret and sample complexity in identifying the best arm. In addition, we also provide a finite-time regret bound of doubly adaptive TS that matches (up to log factors) those of UCB and TS algorithms, thereby establishing that its improved practical benefits do not come at the expense of worst-case suboptimality.
Linear models have shown great effectiveness and flexibility in many fields such as machine learning, signal processing and statistics. They can represent rich spaces of functions while preserving the convexity of the optimization problems where they are used, and are simple to evaluate, differentiate and integrate. However, for modeling non-negative functions, which are crucial for unsupervised learning, density estimation, or non-parametric Bayesian methods, linear models are not applicable directly. Moreover, current state-of-the-art models like generalized linear models either lead to non-convex optimization problems, or cannot be easily integrated. In this paper we provide the first model for non-negative functions which benefits from the same good properties of linear models. In particular, we prove that it admits a representer theorem and provide an efficient dual formulation for convex problems. We study its representation power, showing that the resulting space of functions is strictly richer than that of generalized linear models. Finally we extend the model and the theoretical results to functions with outputs in convex cones. The paper is complemented by an experimental evaluation of the model showing its effectiveness in terms of formulation, algorithmic derivation and practical results on the problems of density estimation, regression with heteroscedastic errors, and multiple quantile regression.
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many economic and financial applications, such as conditional value-at-risk, production efficiency, and adjustment bands in (S,s) models. In this paper we provide feasible inference tools for extremal conditional quantile models that rely upon extreme value approximations to the distribution of self-normalized quantile regression statistics. The methods are simple to implement and can be of independent interest even in the non-regression case. We illustrate the results with two empirical examples analyzing extreme fluctuations of a stock return and extremely low percentiles of live infants birthweights in the range between 250 and 1500 grams.
This paper considers fixed effects estimation and inference in linear and nonlinear panel data models with random coefficients and endogenous regressors. The quantities of interest -- means, variances, and other moments of the random coefficients -- are estimated by cross sectional sample moments of GMM estimators applied separately to the time series of each individual. To deal with the incidental parameter problem introduced by the noise of the within-individual estimators in short panels, we develop bias corrections. These corrections are based on higher-order asymptotic expansions of the GMM estimators and produce improved point and interval estimates in moderately long panels. Under asymptotic sequences where the cross sectional and time series dimensions of the panel pass to infinity at the same rate, the uncorrected estimator has an asymptotic bias of the same order as the asymptotic variance. The bias corrections remove the bias without increasing variance. An empirical example on cigarette demand based on Becker, Grossman and Murphy (1994) shows significant heterogeneity in the price effect across U.S. states.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا