No Arabic abstract
Mesoscopic irregularly ordered and even amorphous self-assembled electronic structures were recently reported in two-dimensional metallic dichalcogenides (TMDs), created and manipulated with short light pulses or by charge injection. Apart from promising new all-electronic memory devices, such states are of great fundamental importance, since such aperiodic states cannot be described in terms of conventional charge-density-wave (CDW) physics. In this paper we address the problem of metastable mesoscopic configurational charge ordering in TMDs with a sparsely filled charged lattice gas model in which electrons are subject only to screened Coulomb repulsion. The model correctly predicts commensurate CDW states corresponding to different TMDs at magic filling fractions $f_m=1/3,1/4,1/9,1/13,1/16$. Doping away from $f_m$ results either in multiple near-degenerate configurational states, or an amorphous state at the correct density observed by scanning tunnelling microscopy. Quantum fluctuations between degenerate states predict a quantum charge liquid at low temperatures, revealing a new generalized viewpoint on both regular, irregular and amorphous charge ordering in transition metal dichalcogenides.
The magnetic ground state of (Sr$_{1-x}$Ca$_x$)$_3$Ru$_2$O$_7$ (0 $leq x leq$ 1) is complex, ranging from an itinerant metamagnetic state (0 $leq x <$ 0.08), to an unusual heavy-mass, nearly ferromagnetic (FM) state (0.08 $< x <$ 0.4), and finally to an antiferromagnetic (AFM) state (0.4 $leq x leq$ 1). In this report we elucidate the electronic properties for these magnetic states, and show that the electronic and magnetic properties are strongly coupled in this system. The electronic ground state evolves from an AFM quasi-two-dimensional metal for $x =$ 1.0, to an Anderson localized state for $0.4 leq x < 1.0$ (the AFM region). When the magnetic state undergoes a transition from the AFM to the nearly FM state, the electronic ground state switches to a weakly localized state induced by magnetic scattering for $0.25 leq x < 0.4$, and then to a magnetic metallic state with the in-plane resistivity $rho_{ab} propto T^alpha$ ($alpha >$ 2) for $0.08 < x < 0.25$. The system eventually transforms into a Fermi liquid ground state when the magnetic ground state enters the itinerant metamagnetic state for $x < 0.08$. When $x$ approaches the critical composition ($x sim$ 0.08), the Fermi liquid temperature is suppressed to zero Kelvin, and non-Fermi liquid behavior is observed. These results demonstrate the strong interplay between charge and spin degrees of freedom in the double layered ruthenates.
We have performed non-resonant x-ray diffraction, resonant soft and hard x-ray magnetic diffraction, soft x-ray absorption and x-ray magnetic circular dichroism measurements to clarify the electronic and magnetic states of the Co3+ ions in GdBaCo2O5.5. Our data are consistent with a 3+ Py Co HS state at the pyramidal sites and a 3+ Oc Co LS state at the octahedral sites. The structural distortion, with a doubling of the a axis (2ap x 2ap x 2ap cell), shows alternating elongations and contractions of the pyramids and indicates that the metal-insulator transition is associated with orbital order in the t2g orbitals of the 3+ Py Co HS state. This distortion corresponds to an alternating ordering of xz and yz orbitals along the a and c axes for the 3+ Py Co . The orbital ordering and pyramidal distortion lead to deformation of the octahedra, but the 3+ Oc Co LS state does not allow an orbital order to occur for the 3+ Oc Co ions. The soft x-ray magnetic diffraction results indicate that the magnetic moments are aligned in the ab plane but are not parallel to the crystallographic a or b axes. The orbital order and the doubling of the magnetic unit cell along the c axis support a non-collinear magnetic structure. The x-ray magnetic circular dichroism data indicate that there is a large orbital magnetic contribution to the total ordered Co moment.
The structure of the low-energy electronic states in layered cobaltates is considered starting from the Mott insulating limit. We argue that the coherent part of the wave-functions and the Fermi-surface topology at low doping are strongly influenced by spin-orbit coupling of the correlated electrons on the $t_{2g}$ level. An effective t-J model based on mixed spin-orbital states is radically different from that for the cuprates, and supports unconventional, pseudospin-triplet pairing.
Anomalous magnetic and electronic properties of the half-metallic ferromagnets (HMF) have been discussed. The general conception of the HMF electronic structure which take into account the most important correlation effects from electron-magnon interactions, in particular, the spin-polaron effects, is presented. Special attention is paid to the so called non-quasiparticle (NQP) or incoherent states which are present in the gap near the Fermi level and can give considerable contributions to thermodynamic and transport properties. Prospects of experimental observation of the NQP states in core-level spectroscopy is discussed. Special features of transport properties of the HMF which are connected with the absence of one-magnon spin-flip scattering processes are investigated. The temperature and magnetic field dependences of resistivity in various regimes are calculated. It is shown that the NQP states can give a dominate contribution to the temperature dependence of the impurity-induced resistivity and in the tunnel junction conductivity. First principle calculations of the NQP-states for the prototype half-metallic material NiMnSb within the local-density approximation plus dynamical mean field theory (LDA+DMFT) are presented.
LiOsO$_3$ has been recently identified as the first unambiguous ferroelectric metal, experimentally realizing a prediction from 1965 by Anderson and Blount. In this work, we investigate the metallic state in LiOsO$_3$ by means of infrared spectroscopy supplemented by Density Functional Theory and Dynamical Mean Field Theory calculations. Our measurements and theoretical calculations clearly show that LiOsO$_3$ is a very bad metal with a small quasiparticle weight, close to a Mott-Hubbard localization transition. The agreement between experiments and theory allows us to ascribe all the relevant features in the optical conductivity to strong electron-electron correlations within the $t_{2g}$ manifold of the osmium atoms.