No Arabic abstract
A variational framework, initially developed for high-order mesh optimisation, is being extended for r-adaptation. The method is based on the minimisation of a functional of the mesh deformation. To achieve adaptation, elements of the initial mesh are manipulated using metric tensors to obtain target elements. The nonlinear optimisation in turns adapts the final high-order mesh to best fit the description of the target elements by minimising the element distortion. Encouraging preliminary results prove that the method behaves well and can be used in the future for more extensive work which shall include the use of error indicators from CFD simulations.
Clustering, a fundamental task in data science and machine learning, groups a set of objects in such a way that objects in the same cluster are closer to each other than to those in other clusters. In this paper, we consider a well-known structure, so-called $r$-nets, which rigorously captures the properties of clustering. We devise algorithms that improve the run-time of approximating $r$-nets in high-dimensional spaces with $ell_1$ and $ell_2$ metrics from $tilde{O}(dn^{2-Theta(sqrt{epsilon})})$ to $tilde{O}(dn + n^{2-alpha})$, where $alpha = Omega({epsilon^{1/3}}/{log(1/epsilon)})$. These algorithms are also used to improve a framework that provides approximate solutions to other high dimensional distance problems. Using this framework, several important related problems can also be solved efficiently, e.g., $(1+epsilon)$-approximate $k$th-nearest neighbor distance, $(4+epsilon)$-approximate Min-Max clustering, $(4+epsilon)$-approximate $k$-center clustering. In addition, we build an algorithm that $(1+epsilon)$-approximates greedy permutations in time $tilde{O}((dn + n^{2-alpha}) cdot log{Phi})$ where $Phi$ is the spread of the input. This algorithm is used to $(2+epsilon)$-approximate $k$-center with the same time complexity.
In this paper, we propose a unifying framework incorporating several momentum-related search directions for solving strongly monotone variational inequalities. The specific combinations of the search directions in the framework are made to guarantee the optimal iteration complexity bound of $mathcal{O}left(kappaln(1/epsilon)right)$ to reach an $epsilon$-solution, where $kappa$ is the condition number. This framework provides the flexibility for algorithm designers to train -- among different parameter combinations -- the one that best suits the structure of the problem class at hand. The proposed framework includes the following iterative points and directions as its constituents: the extra-gradient, the optimistic gradient descent ascent (OGDA) direction (aka optimism), the heavy-ball direction, and Nesterovs extrapolation points. As a result, all the afore-mentioned methods become the special cases under the general scheme of extra points. We also specialize this approach to strongly convex minimization, and show that a similar extra-point approach achieves the optimal iteration complexity bound of $mathcal{O}(sqrt{kappa}ln(1/epsilon))$ for this class of problems.
We propose a new viewpoint on variational mean-field games with diffusion and quadratic Hamiltonian. We show the equivalence of such mean-field games with a relative entropy minimization at the level of probabilities on curves. We also address the time-discretization of such problems, establish $Gamma$-convergence results as the time step vanishes and propose an efficient algorithm relying on this entropic interpretation as well as on the Sinkhorn scaling algorithm.
We define a new divergence of von Neumann algebras using a variational expression that is similar in nature to Kosakis formula for the relative entropy. Our divergence satisfies the usual desirable properties, upper bounds the sandwiched Renyi entropy and reduces to the fidelity in a limit. As an illustration, we use the formula in quantum field theory to compute our divergence between the vacuum in a bipartite system and an orbifolded -- in the sense of conditional expectation -- system in terms of the Jones index. We take the opportunity to point out entropic certainty relation for arbitrary von Neumann subalgebras of a factor related to the relative entropy. This certainty relation has an equivalent formulation in terms of error correcting codes.
The next generation of High Energy Physics experiments requires a GRID approach to a distributed computing system and the associated data management: the key concept is the Virtual Organisation (VO), a group of geographycally distributed users with a common goal and the will to share their resources. A similar approach is being applied to a group of Hospitals which joined the GPCALMA project (Grid Platform for Computer Assisted Library for MAmmography), which will allow common screening programs for early diagnosis of breast and, in the future, lung cancer. HEP techniques come into play in writing the application code, which makes use of neural networks for the image analysis and shows performances similar to radiologists in the diagnosis. GRID technologies will allow remote image analysis and interactive online diagnosis, with a relevant reduction of the delays presently associated to screening programs.