Do you want to publish a course? Click here

Vacuum static spaces with vanishing of complete divergence of Bach tensor and Weyl tensor

129   0   0.0 ( 0 )
 Added by Seungsu Hwang
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study vacuum static spaces with the complete divergence of the Bach tensor and Weyl tensor. First, we prove that the vanishing of complete divergence of the Bach tensor and Weyl tensor implies the harmonicity of the metric, and we present examples in which these conditions do not imply Bach flatness. As an application, we prove the non-existence of multiple black holes in vacuum static spaces with zero scalar curvature. On the other hand, we prove the Besse conjecture under these conditions, which are weaker than harmonicity or Bach flatness. Moreover, we show a rigidity result for vacuum static spaces and find a sufficient condition for the metric to be Bach-flat.



rate research

Read More

139 - Gabjin Yun , Seungsu Hwang 2017
On a compact $n$-dimensional manifold $M$, it is well known that a critical metric of the total scalar curvature, restricted to the space of metrics with unit volume, is Einstein. It has been conjectured that a critical metric of the total scalar curvature, restricted to the space of metrics with constant scalar curvature of unit volume, will also be Einstein. It was shown that this conjecture is true when $M$ together with a critical metric has harmonic curvature or the metric is Bach flat. In this paper, we tried to prove this conjecture with a divergence-free Bach tensor.
132 - Gabjin Yun , Seungsu Hwang 2016
On a compact $n$-dimensional manifold, it is well known that a critical metric of the total scalar curvature, restricted to the space of metrics with unit volume is Einstein. It has been conjectured that a critical metric of the total scalar curvature, restricted to the space of metrics with constant scalar curvature of unit volume, will be Einstein. This conjecture was proposed in 1987 by Besse, but has yet to be proved. In this paper, we prove the Besse conjecture with a weaker condition than harmonic curvature for $ngeq 3$.
344 - Huai-Dong Cao , Jiangtao Yu 2020
In this paper, we extend the work of Cao-Chen [9] on Bach-flat gradient Ricci solitons to classify $n$-dimensional ($nge 5$) complete $D$-flat gradient steady Ricci solitons. More precisely, we prove that any $n$-dimensional complete noncompact gradient steady Ricci soliton with vanishing $D$-tensor is either Ricci-flat, or isometric to the Bryant soliton. Furthermore, the proof extends to the shrinking case and the expanding case as well.
116 - Gabjin Yun , Seungsu Hwang 2018
On a compact $n$-dimensional manifold, it is well known that a critical metric of the total scalar curvature, restricted to the space of metrics with unit volume is Einstein. It has been conjectured that a critical metric of the total scalar curvature, restricted to the space of metrics with constant scalar curvature of unit volume, will be Einstein. This conjecture, proposed in 1987 by Besse, has not been resolved except when $M$ has harmonic curvature or the metric is Bach flat. In this paper, we prove some gap properties under divergence-free Bach tensor condition for $ngeq 5$, and a similar condition for $n=4$.
106 - Seungsu Hwang , Gabjin Yun 2021
In this paper, we study vacuum static spaces with positive isotropic curvature. We prove that if $(M^n, g, f)$, $n ge 4$, is a compact vacuum static space with positive isotropic curvature, then up to finite cover, $M$ is isometric to a sphere ${Bbb S}^n$ or the product of a circle ${Bbb S}^1$ with an $(n-1)$-dimensional sphere ${Bbb S}^{n-1}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا