Do you want to publish a course? Click here

Besse conjecture with vanishing conditions on the Weyl tensor

133   0   0.0 ( 0 )
 Added by Seungsu Hwang
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

On a compact $n$-dimensional manifold, it is well known that a critical metric of the total scalar curvature, restricted to the space of metrics with unit volume is Einstein. It has been conjectured that a critical metric of the total scalar curvature, restricted to the space of metrics with constant scalar curvature of unit volume, will be Einstein. This conjecture was proposed in 1987 by Besse, but has yet to be proved. In this paper, we prove the Besse conjecture with a weaker condition than harmonic curvature for $ngeq 3$.



rate research

Read More

141 - Seungsu Hwang , Gabjin Yun 2021
The critical point equation arises as a critical point of the total scalar curvature functional defined on the space of constant scalar curvature metrics of a unit volume on a compact manifold. In this equation, there exists a function $f$ on the manifold that satisfies the following $$ (1+f){rm Ric} = Ddf + frac{nf +n-1}{n(n-1)}sg. $$ It has been conjectured that if $(g, f)$ is a solution of the critical point equation, then $g$ is Einstein and so $(M, g)$ is isometric to a standard sphere. In this paper, we show that this conjecture is true if the given Riemannian metric has positive isotropic curvature.
128 - Seungsu Hwang , Gabjin Yun 2018
In this paper, we study vacuum static spaces with the complete divergence of the Bach tensor and Weyl tensor. First, we prove that the vanishing of complete divergence of the Bach tensor and Weyl tensor implies the harmonicity of the metric, and we present examples in which these conditions do not imply Bach flatness. As an application, we prove the non-existence of multiple black holes in vacuum static spaces with zero scalar curvature. On the other hand, we prove the Besse conjecture under these conditions, which are weaker than harmonicity or Bach flatness. Moreover, we show a rigidity result for vacuum static spaces and find a sufficient condition for the metric to be Bach-flat.
344 - Huai-Dong Cao , Jiangtao Yu 2020
In this paper, we extend the work of Cao-Chen [9] on Bach-flat gradient Ricci solitons to classify $n$-dimensional ($nge 5$) complete $D$-flat gradient steady Ricci solitons. More precisely, we prove that any $n$-dimensional complete noncompact gradient steady Ricci soliton with vanishing $D$-tensor is either Ricci-flat, or isometric to the Bryant soliton. Furthermore, the proof extends to the shrinking case and the expanding case as well.
195 - Xiaobo Liu , Xin Wang 2013
In this paper we give some sufficient conditions for the vanishing of the genus-2 G-function, which was introduced by B. Dubrovin, S. Liu and Y. Zhang in [DLZ]. As a corollary we prove their conjecture for the vanishing of the genus-2 G-function for ADE singularities.
We study when the Jacobi operator associated to the Weyl conformal curvature tensor has constant eigenvalues on the bundle of unit spacelike or timelike tangent vectors. This leads to questions in the conformal geometry of pseudo-Riemannian manifolds which generalize the Osserman conjecture to this setting. We also study similar questions related to the skew-symmetric curvature operator defined by the Weyl conformal curvature tensor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا