Do you want to publish a course? Click here

Multi-color quantum control for suppressing ground state coherences in two-dimensional electronic spectroscopy

69   0   0.0 ( 0 )
 Added by James Lim
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The measured multi-dimensional spectral response of different light harvesting complexes exhibits oscillatory features which suggest an underlying coherent energy transfer. However, making this inference rigorous is challenging due to the difficulty of isolating excited state coherences in highly congested spectra. In this work, we provide a coherent control scheme that suppresses ground state coherences, thus making rephasing spectra dominated by excited state coherences. We provide a benchmark for the scheme using a model dimeric system and numerically exact methods to analyze the spectral response. We argue that combining temporal and spectral control methods can facilitate a second generation of experiments that are tailored to extract desired information and thus significantly advance our understanding of complex open many-body structure and dynamics.



rate research

Read More

Second order correlations reveal quantum beats from a coherent ground-state superposition on the undriven mode of a two-mode cavity QED system. Continuous drive induces decoherence due to Rayleigh scattering. We control this with feedback and explore postselection techniques to extract specific behavior.
Recent interest in the role of quantum mechanics in the primary events of photosynthetic energy transfer has led to a convergence of nonlinear optical spectroscopy and quantum optics on the topic of energy-transfer dynamics in pigment-protein complexes. The convergence of these two communities has unveiled a mismatch between the background and terminology of the respective fields. To make connections, we provide a pedagogical guide to understanding the basics of two-dimensional electronic spectra aimed at researchers with a background in quantum optics.
Radical pairs and the dynamics they undergo are prevalent in many chemical and biological systems. Specifically, it has been proposed that the radical pair mechanism results from a relatively strong hyperfine interaction with its intrinsic nuclear spin environment. While the existence of this mechanism is undisputed, the nanoscale details remain to be experimentally shown. We analyze here the role of a quantum sensor in detecting the spin dynamics (non-Markovian) of individual radical pairs in the presence of a weak magnetic field. We show how quantum control methods can be used to set apart the dynamics of radical pair mechanism at various stages of the evolution. We envisage these findings having far-reaching implications to the understanding of the physical mechanism in magnetoreception and other bio-chemical processes with a microscopic detail.
The development of spectroscopic techniques able to detect and verify quantum coherence is a goal of increasing importance given the rapid progress of new quantum technologies, the advances in the field of quantum thermodynamics, and the emergence of new questions in chemistry and biology regarding the possible relevance of quantum coherence in biochemical processes. Ideally, these tools should be able to detect and verify the presence of quantum coherence in both the transient dynamics and the steady state of driven-dissipative systems, such as light-harvesting complexes driven by thermal photons in natural conditions. This requirement poses a challenge for standard laser spectroscopy methods. Here, we propose photon correlation measurements as a new tool to analyse quantum dynamics in molecular aggregates in driven-dissipative situations. We show that the photon correlation statistics on the light emitted by a molecular dimer model can signal the presence of coherent dynamics. Deviations from the counting statistics of independent emitters constitute a direct fingerprint of quantum coherence in the steady state. Furthermore, the analysis of frequency resolved photon correlations can signal the presence of coherent dynamics even in the absence of steady state coherence, providing direct spectroscopic access to the much sought-after site energies in molecular aggregates.
We employ two-photon spectroscopy to study the vibrational states of the triplet ground state potential ($a^3Sigma^+$) of the $^{23}$Na$^{6}$Li molecule. Pairs of Na and Li atoms in an ultracold mixture are photoassociated into an excited triplet molecular state, which in turn is coupled to vibrational states of the triplet ground potential. Vibrational state binding energies, line strengths, and potential fitting parameters for the triplet ground $a^3Sigma^+$ potential are reported. We also observe rotational splitting in the lowest vibrational state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا