Do you want to publish a course? Click here

Procedure of simulations for Evaluations of Transient Parameters Stability for RF Cavities Due to Effects of Pulsed RF Heating

46   0   0.0 ( 0 )
 Added by Valentin Paramonov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Pulsed RF Heating (PRFH) is the well known effect in the development of high gradient accelerating cavities. There is a lot of research dedicated to the tolerable strength of electromagnetic field and the corresponding temperature rise leading to the surface degradation and cavity performance violation. To provide high quality of electron bunches, RF gun cavities operate in electron sources with high electric, and hence, magnetic RF fields. Being at the safe side with respect to cavity surface degradation, related to the PRFH result for S band in essentially transient thermal deformations, leading to the cavity frequency shift and quality factor change even within a few microseconds in the RF pulse. Thermo-elastic deformations consist of slow heat propagation from the cavity surface and fast elastic wave propagation from the very thin heated surface layer inside the cavity body with different in five orders typical velocities. For simulations of PRFH effects for more or less practical cavity design we can get results only in direct numerical simulations with certified software like ANSYS. The critical issue for such direct simulations is to combine in a single model the possibility of correct description for such qualitatively different process and to prove the reasonable precision of simulations. This report describes the procedure for simulation of PRFH related transient thermo-elastic deformations in S band cavities. The results of test simulations are presented to show the relative precision of simulations.



rate research

Read More

109 - S. Casalbuoni 2004
A systematic study is presented on the superconductivity (sc) parameters of the ultrapure niobium used for the fabrication of the nine-cell 1.3 GHz cavities for the linear collider project TESLA. Cylindrical Nb samples have been subjected to the same surface treatments that are applied to the TESLA cavities: buffered chemical polishing (BCP), electrolytic polishing (EP), low-temperature bakeout (LTB). The magnetization curves and the complex magnetic susceptibility have been measured over a wide range of temperatures and dc magnetic fields, and also for di erent frequencies of the applied ac magnetic field. The bulk superconductivity parameters such as the critical temperature Tc = 9.26 K and the upper critical field Bc2(0) = 410 mT are found to be in good agreement with previous data. Evidence for surface superconductivity at fields above Bc2 is found in all samples. The critical surface field exceeds the Ginzburg-Landau field Bc3 = 1.695Bc2 by about 10% in BCP-treated samples and increases even further if EP or LTB are applied. From the field dependence of the susceptibility and a power-law analysis of the complex ac conductivity and resistivity the existence of two different phases of surface superconductivity can be established which resemble the Meissner and Abrikosov phases in the bulk: (1) coherent surface superconductivity, allowing sc shielding currents flowing around the entire cylindrical sample, for external fields B in the range between Bc2 and Bcohc3, and (2) incoherent surface superconductivity with disconnected sc domains between Bcohc3 and Bc3. The coherent critical surface field separating the two phases is found to be Bcoh c3 = 0.81Bc3 for all samples. The exponents in the power law analysis are different for BCP and EP samples, pointing to different surface topologies.
A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to $SF_6$ and $O_2$ were measured.
Precise calibration of the cavity phase signals is necessary for the operation of any particle accelerator. For many systems this requires human in the loop adjustments based on measurements of the beam parameters downstream. Some recent work has developed a scheme for the calibration of the cavity phase using beam measurements and beam-loading however this scheme is still a multi-step process that requires heavy automation or human in the loop. In this paper we analyze a new scheme that uses only RF signals reacting to beam-loading to calculate the phase of the beam relative to the cavity. This technique could be used in slow control loops to provide real-time adjustment of the cavity phase calibration without human intervention thereby increasing the stability and reliability of the accelerator.
Even when cooled through its transition temperature in the presence of an external magnetic field, a superconductor can expel nearly all external magnetic flux. This Letter presents an experimental study to identify the parameters that most strongly influence flux trapping in high purity niobium during cooldown. This is critical to the operation of superconducting radiofrequency cavities, in which trapped flux degrades the quality factor and therefore cryogenic efficiency. Flux expulsion was measured on a large survey of 1.3 GHz cavities prepared in various ways. It is shown that both spatial thermal gradient and high temperature treatment are critical to expelling external magnetic fields, while surface treatment has minimal effect. For the first time, it is shown that a cavity can be converted from poor expulsion behavior to strong expulsion behavior after furnace treatment, resulting in a substantial improvement in quality factor. Future plans are described to build on this result in order to optimize treatment for future cavities.
This submission was withdrawn because of an unresolved dispute between the authors [arXiv admin 2009-4-13].
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا