Do you want to publish a course? Click here

Giant Magnetoelastic-Coupling Driven Spin-Lattice Liquid State in Molybdate Pyrochlores

69   0   0.0 ( 0 )
 Added by Andrew Smerald
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose the idea of a spin-lattice liquid, in which spin and lattice degrees of freedom are strongly coupled and remain disordered and fluctuating down to low temperatures. We show that such a state arises naturally from a microscopic analysis of a class of molybdate pyrochlore compounds, and is driven by a giant magnetoelastic effect. Finally, we argue that this could explain some of the experimental features of Y$_2$Mo$_2$O$_7$.



rate research

Read More

We present new magnetic heat capacity and neutron scattering results for two magnetically frustrated molybdate pyrochlores: $S=1$ oxide Lu$_2$Mo$_2$O$_7$ and $S={frac{1}{2}}$ oxynitride Lu$_2$Mo$_2$O$_5$N$_2$. Lu$_2$Mo$_2$O$_7$ undergoes a transition to an unconventional spin glass ground state at $T_f {sim} 16$ K. However, the preparation of the corresponding oxynitride tunes the nature of the ground state from spin glass to quantum spin liquid. The comparison of the static and dynamic spin correlations within the oxide and oxynitride phases presented here reveals the crucial role played by quantum fluctuations in the selection of a ground state. Furthermore, we estimate an upper limit for a gap in the spin excitation spectrum of the quantum spin liquid state of the oxynitride of ${Delta} {sim} 0.05$ meV or ${frac{Delta}{|theta|}}sim0.004$, in units of its antiferromagnetic Weiss constant ${theta} {sim}-121$ K.
CuCrS2 is a triangular lattice Heisenberg antiferromagnet with a rhombohedral crystal structure. We report on neutron and synchrotron powder diffraction results which reveal a monoclinic lattice distortion at the magnetic transition and verify a magnetoelastic coupling. CuCrS2 is therefore an interesting material to study the influence of magnetism on the relief of geometrical frustration.
We present high-resolution measurements of the thermal expansion and the magnetostriction of TlCuCl$_{3}$ which shows field-induced antiferromagnetic order. We find pronounced anomalies in the field and temperature dependence of different directions of the lattice signaling a large magnetoelastic coupling. The phase boundary is extremely sensitive to pressure, e.g. the transition field would change by about +/- 185$%/GPa under uniaxial pressure applied along certain directions. This drastic effect can unambiguously be traced back to changes of the intradimer coupling under uniaxial pressure. The interdimer couplings remain essentially unchanged under pressure, but strongly change when Tl is replaced by K.
The interplay between geometric frustration (GF) and bond disorder is studied in the Ising kagome lattice within a cluster approach. The model considers antiferromagnetic (AF) short-range couplings and long-range intercluster disordered interactions. The replica formalism is used to obtain an effective single cluster model from where the thermodynamics is analyzed by exact diagonalization. We found that the presence of GF can introduce cluster freezing at very low levels of disorder. The system exhibits an entropy plateau followed by a large entropy drop close to the freezing temperature. In this scenario, a spin-liquid (SL) behavior prevents conventional long-range order, but an infinitesimal disorder picks out uncompensated cluster states from the multi degenerate SL regime, potentializing the intercluster disordered coupling and bringing the cluster spin-glass state. To summarize, our results suggest that the SL state combined with low levels of disorder can activate small clusters, providing hypersensitivity to the freezing process in geometrically frustrated materials and playing a key role in the glassy stabilization. We propose that this physical mechanism could be present in several geometrically frustrated materials. In particular, we discuss our results in connection to the recent experimental investigations of the Ising kagome compound Co$_3$Mg(OH)$_6$Cl$_2$.
225 - Aaron Patz , Tianqi Li , Sheng Ran 2014
Many of the iron pnictides have strongly anisotropic normal-state characteristics, important for the exotic magnetic and superconducting behavior these materials exhibit. Yet, the origin of the observed anisotropy is unclear. Electronically driven nematicity has been suggested, but distinguishing this as an independent degree of freedom from magnetic and structural orders is difficult, as these couple together to break the same tetragonal symmetry. Here we use time-resolved polarimetry to reveal critical nematic fluctuations in unstrained Ba(Fe_(1-x)Co_x)_2As_2. The femtosecond anisotropic response, which arises from the two-fold in-plane anisotropy of the complex refractive index, displays a characteristic two-step recovery absent in the isotropic response. The fast recovery appears only in the magnetically ordered state, whereas the slow one persists in the paramagnetic phase with a critical divergence approaching the structural transition temperature. The dynamics also reveal a gigantic magnetoelastic coupling that far exceeds electron-spin and electron-phonon couplings, opposite to conventional magnetic metals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا