No Arabic abstract
We suggest that fast-rising blue optical transients (FBOTs) and the brightest event of the class AT2018cow result from an electron-capture collapse to a NS following a merger of a massive ONeMg white dwarf (WD) with another WD. Two distinct evolutionary channels lead to the disruption of the less massive WD during the merger and the formation of a shell burning non-degenerate star incorporating the ONeMg core. During the shell burning stage a large fraction of the envelope is lost to the wind, while mass and angular momentum are added to the core. As a result, the electron-capture collapse occurs with a small envelope mass, after $sim 10^2-10^4$ years. During the formation of a neutron star as little as $sim 10^{-2} M_odot $ of the material is ejected at the bounce-off with mildly relativistic velocities and total energy $sim$ few $ 10^{50}$ ergs. This ejecta becomes optically thin on a time scale of days - this is the FBOT. During the collapse, the neutron star is spun up and magnetic field is amplified. The ensuing fast magnetically-dominated relativistic wind from the newly formed neutron star shocks against the ejecta, and later against the wind. The radiation-dominated forward shock produces the long-lasting optical afterglow, while the termination shock of the relativistic wind produces the high energy emission in a manner similar to Pulsar Wind Nebulae. If the secondary WD was of the DA type, the wind will likely have $sim 10^{-4} M_odot$ of hydrogen; this explains the appearance of hydrogen late in the afterglow spectrum. The model explains many of the puzzling properties of FBOTs/AT2018cow: host galaxies, a fast and light anisotropic ejecta producing a bright optical peak, afterglow high energy emission of similar luminosity to the optical, and late infra-red features.
Mergers of white dwarfs (WDs) may lead to a variety of transient astrophysical events, SNIa being one possible outcome. Lyutikov & Toonen (2017, 2019) argued that mergers of WDs result, under various parameter regimes, in unusual central engine-powered supernova and a type of short Gamma Ray Bursts that show extended emission tails. Observations by Gvaramadze et al. (2019) of the central star and the nebula J005311 match to the details the model of Lyutikov & Toonen (2017, 2019) for the immediate product of a merger of a heavy ONeMg WD with CO WD (age, luminosity, stellar size, hydrogen deficiency and chemical composition).
We use Gaia Data Release 2 to identify 13,928 white dwarfs within 100 pc of the Sun. The exquisite astrometry from Gaia reveals for the first time a bifurcation in the observed white dwarf sequence in both Gaia and the Sloan Digital Sky Survey (SDSS) passbands. The latter is easily explained by a helium atmosphere white dwarf fraction of 36%. However, the bifurcation in the Gaia colour-magnitude diagram depends on both the atmospheric composition and the mass distribution. We simulate theoretical colour-magnitude diagrams for single and binary white dwarfs using a population synthesis approach and demonstrate that there is a significant contribution from relatively massive white dwarfs that likely formed through mergers. These include white dwarf remnants of main-sequence (blue stragglers) and post-main sequence mergers. The mass distribution of the SDSS subsample, including the spectroscopically confirmed white dwarfs, also shows this massive bump. This is the first direct detection of such a population in a volume-limited sample.
(Abridged.) The accretion-induced collapse (AIC) of a white dwarf (WD) may lead to the formation of a protoneutron star and a collapse-driven supernova explosion. This process represents a path alternative to thermonuclear disruption of accreting white dwarfs in Type Ia supernovae. Neutrino and gravitational-wave (GW) observations may provide crucial information necessary to reveal a potential AIC. Motivated by the need for systematic predictions of the GW signature of AIC, we present results from an extensive set of general-relativistic AIC simulations using a microphysical finite-temperature equation of state and an approximate treatment of deleptonization during collapse. Investigating a set of 114 progenitor models in rotational equilibrium, with a wide range of rotational configurations, temperatures and central densities, we extend previous Newtonian studies and find that the GW signal has a generic shape akin to what is known as a Type III signal in the literature. We discuss the detectability of the emitted GWs, showing that the signal-to-noise ratio for current or next-generation interferometer detectors could be high enough to detect such events in our Galaxy. Some of our AIC models form massive quasi-Keplerian accretion disks after bounce. In rapidly differentially rotating models, the disk mass can be as large as ~0.8-Msun. Slowly and/or uniformly rotating models produce much smaller disks. Finally, we find that the postbounce cores of rapidly spinning white dwarfs can reach sufficiently rapid rotation to develop a nonaxisymmetric rotational instability.
The bright transient AT2018cow has been unlike any other known type of transient. Its high brightness, rapid rise and decay and initially nearly featureless spectrum are unprecedented and difficult to explain using models for similar burst sources. We present evidence for faint gamma-ray emission continuing for at least 8 days, and featureless spectra in the ultraviolet bands -- both unusual for eruptive sources. The X-ray variability of the source has a burst-like character. The UV-optical spectrum does not show any CNO line but is well described by a blackbody. We demonstrate that a model invoking the tidal disruption of a 0.1 - 0.4 Msun Helium White Dwarf (WD) by a 100,000 to one million solar mass Black Hole (BH) located in the outskirts of galaxy Z~137-068 could provide an explanation for most of the characteristics shown in the multi-wavelength observations. A blackbody-like emission is emitted from an opaque photosphere, formed by the debris of the WD disruption. Broad features showing up in the optical/infrared spectra in the early stage are probably velocity broadened lines produced in a transient high-velocity outward moving cocoon. The asymmetric optical/infrared lines that appeared at a later stage are emission from an atmospheric layer when it detached from thermal equilibrium with the photosphere, which undergoes more rapid cooling. The photosphere shrinks when its temperature drops, and the subsequent infall of the atmosphere produced asymmetric line profiles. Additionally, a non-thermal jet might be present, emitting X-rays in the 10-150 keV band.
(Abridged) The explosion mechanism of electron-capture supernovae (ECSNe) remains equivocal. We attempt to constrain the explosion mechanism (neutron-star-forming implosion or thermonuclear explosion) and the frequency of occurrence of ECSNe using nucleosynthesis simulations of the latter scenario, population synthesis, the solar abundance distribution, pre-solar meteoritic oxide grain isotopic ratio measurements and the white dwarf mass-radius relation. Tracer particles from 3d hydrodynamic simulations were post-processed with a large nuclear reaction network in order to determine the complete compositional state of the bound ONeFe remnant and the ejecta, and population synthesis simulations were performed in order to estimate the ECSN rate with respect to the CCSN rate. The 3d deflagration simulations drastically overproduce the neutron-rich isotopes $^{48}$Ca, $^{50}$Ti, $^{54}$Cr, $^{60}$Fe and several of the Zn isotopes relative to their solar abundances. Using the solar abundance distribution as our constraint, we place an upper limit on the frequency of thermonuclear ECSNe as 1$-$3~% the frequency at which core-collapse supernovae (FeCCSNe) occur. This is on par with or 1~dex lower than the estimates for ECSNe from single stars. The upper limit from the yields is also in relatively good agreement with the predictions from our population synthesis simulations. The $^{54}$Cr/$^{52}$Cr and $^{50}$Ti/$^{48}$Ti isotopic ratios in the ejecta are a near-perfect match with recent measurements of extreme pre-solar meteoritc oxide grains, and $^{53}$Cr/$^{52}$Cr can also be matched if the ejecta condenses before mixing with the interstellar medium. Theoretical mass-radius relations for the bound ONeFe WD remnants of these explosions are apparently consistent with several observational WD candidates.