Do you want to publish a course? Click here

Swift spectra of AT2018cow: A White Dwarf Tidal Disruption Event?

139   0   0.0 ( 0 )
 Added by N. Paul M. Kuin
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The bright transient AT2018cow has been unlike any other known type of transient. Its high brightness, rapid rise and decay and initially nearly featureless spectrum are unprecedented and difficult to explain using models for similar burst sources. We present evidence for faint gamma-ray emission continuing for at least 8 days, and featureless spectra in the ultraviolet bands -- both unusual for eruptive sources. The X-ray variability of the source has a burst-like character. The UV-optical spectrum does not show any CNO line but is well described by a blackbody. We demonstrate that a model invoking the tidal disruption of a 0.1 - 0.4 Msun Helium White Dwarf (WD) by a 100,000 to one million solar mass Black Hole (BH) located in the outskirts of galaxy Z~137-068 could provide an explanation for most of the characteristics shown in the multi-wavelength observations. A blackbody-like emission is emitted from an opaque photosphere, formed by the debris of the WD disruption. Broad features showing up in the optical/infrared spectra in the early stage are probably velocity broadened lines produced in a transient high-velocity outward moving cocoon. The asymmetric optical/infrared lines that appeared at a later stage are emission from an atmospheric layer when it detached from thermal equilibrium with the photosphere, which undergoes more rapid cooling. The photosphere shrinks when its temperature drops, and the subsequent infall of the atmosphere produced asymmetric line profiles. Additionally, a non-thermal jet might be present, emitting X-rays in the 10-150 keV band.



rate research

Read More

A small fraction of candidate tidal disruption events (TDEs) show evidence of powerful relativistic jets, which are particularly pronounced at radio wavelengths, and likely contribute non-thermal emission at a wide range of wavelengths. A non-thermal emission component can be diagnosed using linear polarimetry, even when the total received light is dominated by emission from an accretion disk or disk outflow. In this paper we present Very Large Telescope (VLT) measurements of the linear polarisation of the optical light of jetted TDE Swift J2058+0516. This is the second jetted TDE studied in this manner, after Swift J1644+57. We find evidence of non-zero optical linear polarisation, P_V ~ 8%, a level very similar to the near-infrared polarimetry of Swift J1644+57. These detections provide an independent test of the emission mechanisms of the multiwavelength emission of jetted tidal disruption events.
RBS 1032 is a supersoft ($Gammasim5$), luminous ($sim10^{43}$ erg/s) ROSAT PSPC source which has been associated with an inactive dwarf galaxy at $z=0.026$, SDSS J114726.69+494257.8. We have analyzed an XMM-Newton observation which confirms that RBS 1032 is indeed associated with the dwarf galaxy. Moreover, RBS 1032 has undergone a factor of $sim100-300$ decay since November 1990. This variability suggests that RBS 1032 may not be a steadily accreting intermediate-mass black hole, but rather an accretion flare from the tidal disruption of a star by the central black hole (which may or may not be intermediate-mass). We suggest that additional tidal disruption events may remain unidentified in archival ROSAT data, such that disruption rate estimates based upon ROSAT All-Sky Survey data may need reconsideration.
112 - C.S. Kochanek 2016
We survey the properties of stars destroyed in TDEs as a function of BH mass, stellar mass and evolutionary state, star formation history and redshift. For Mbh<10^7Msun, the typical TDE is due to a M*~0.3Msun M-dwarf, although the mass function is relatively flat for $M*<Msun. The contribution from older main sequence stars and sub-giants is small but not negligible. From Mbh~10^7.5-10^8.5Msun, the balance rapidly shifts to higher mass stars and a larger contribution from evolved stars, and is ultimately dominated by evolved stars at higher BH masses. The star formation history has little effect until the rates are dominated by evolved stars. TDE rates should decline very rapidly towards higher redshifts. The volumetric rate of TDEs is very high because the BH mass function diverges for low masses. However, any emission mechanism which is largely Eddington-limited for low BH masses suppresses this divergence in any observed sample and leads to TDE samples dominated by Mbh~10^6.0-10^7.5Msun BHs with roughly Eddington peak accretion rates. The typical fall back time is relatively long, with 16% having Tfb<10^(-1) years (37 days), and 84% having longer time scales. Many residual rate discrepancies can be explained if surveys are biased against TDEs with these longer Tfb, which seems very plausible if Tfb has any relation to the transient rise time. For almost any BH mass function, systematic searches for fainter, faster time scale TDEs in smaller galaxies, and longer time scale TDEs in more massive galaxies are likely to be rewarded.
75 - R.D. Saxton 2019
Aims. We investigate the evolution of X-ray selected tidal disruption events. Methods. New events are found in near-real time data from XMM-Newton slews and are monitored by multi-wavelength facilities. Results. In August 2016, X-ray emission was detected from the galaxy XMMSL2 J144605.0+685735 (a.k.a. 2MASX 14460522+6857311), a factor 20 times higher than an upper limit from 25 years earlier. The X-ray flux was flat for ~100 days and then fell by a factor 100 over the following 500 days. The UV flux was stable for the first 400 days before fading by a magnitude, while the optical (U,B,V bands) have been roughly constant for 850 days. Optically, the galaxy appears to be quiescent, at a distance of $127pm{4}$ Mpc (z=$0.029pm{0.001}$) with a spectrum consisting of a young stellar population of age 1-5 Gyr, an older population and a total stellar mass of ~6 x $10^{9}$ solar masses. The bolometric luminosity peaked at L bol ~ $10^{43}$ ergs s$^{-1}$ with an X-ray spectrum that may be modeled by a power-law of $Gamma$~2.6 or Comptonisation of a low-temperature thermal component by thermal electrons. We consider a tidal disruption event to be the most likely cause of the flare. Radio emission was absent in this event down to < 10$mu$Jy, which limits the total energy of a hypothetical off-axis jet to E < 5 x $10^{50}$ ergs. The independent behaviour of the optical, UV and X-ray light curves challenges models where the UV emission is produced by reprocessing of thermal nuclear emission or by stream-stream collisions. We suggest that the observed UV emission may have been produced from a truncated accretion disk and the X-rays from Compton upscattering of these disk photons.
Multiwavelength flares from tidal disruption and accretion of stars can be used to find and study otherwise dormant massive black holes in galactic nuclei. Previous well-monitored candidate flares are short-lived, with most emission confined to within ~1 year. Here we report the discovery of a well observed super-long (>11 years) luminous soft X-ray flare from the nuclear region of a dwarf starburst galaxy. After an apparently fast rise within ~4 months a decade ago, the X-ray luminosity, though showing a weak trend of decay, has been persistently high at around the Eddington limit (when the radiation pressure balances the gravitational force). The X-ray spectra are generally soft (steeply declining towards higher energies) and can be described with Comptonized emission from an optically thick low-temperature corona, a super-Eddington accretion signature often observed in accreting stellar-mass black holes. Dramatic spectral softening was also caught in one recent observation, implying either a temporary transition from the super-Eddington accretion state to the standard thermal state or the presence of a transient highly blueshifted (~0.36c) warm absorber. All these properties in concert suggest a tidal disruption event of an unusually long super-Eddington accretion phase that has never been observed before.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا