Do you want to publish a course? Click here

Correct way to extract dominant part of the Wilson loop in higher representations

65   0   0.0 ( 0 )
 Added by Ryutaro Matsudo
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The Abelian dominance for the string tension was shown for the fundamental sources in MA gauge in the lattice simulations. For higher representations, however, it is also known that the naive Abelian Wilson loop, which is defined by using the diagonal part of the gauge field, does not reproduce the correct behavior. To solve this problem, for an arbitrary representation of an arbitrary compact gauge group, we propose to redefine the Abelian Wilson loop. By using this redefined operator, we demonstrate the Abelian dominance for sources in the adjoint representation and the sextet representation of $SU(3)$ gauge group in lattice simulations.



rate research

Read More

In previous works, we have proposed a new formulation of Yang-Mills theory on the lattice so that the so-called restricted field obtained from the gauge-covariant decomposition plays the dominant role in quark confinement. This framework improves the Abelian projection in the gauge-independent manner. For quarks in the fundamental representation, we have demonstrated some numerical evidences for the restricted field dominance in the string tension, which means that the string tension extracted from the restricted part of the Wilson loop reproduces the string tension extracted from the original Wilson loop. However, it is known that the restricted field dominance is not observed for the Wilson loop in higher representations if the restricted part of the Wilson loop is extracted by adopting the Abelian projection or the field decomposition naively in the same way as in the fundamental representation. In this paper, therefore, we focus on confinement of quarks in higher representations. By virtue of the non-Abelian Stokes theorem for the Wilson loop operator, we propose suitable gauge-invariant operators constructed from the restricted field to reproduce the correct behavior of the original Wilson loop averages for higher representations. Moreover, we perform lattice simulations to measure the static potential for quarks in higher representations using the proposed operators. We find that the proposed operators well reproduce the behavior of the original Wilson loop average, namely, the linear part of the static potential with the correct value of the string tension, which overcomes the problem that occurs in naively applying Abelian-projection to the Wilson loop operator for higher representations.
55 - Teruaki Inagaki 2003
The axial anomaly arising from the fermion sector of $U(N)$ or $SU(N)$ reduced model is studied under a certain restriction of gauge field configurations (the ``$U(1)$ embedding with $N=L^d$). We use the overlap-Dirac operator and consider how the anomaly changes as a function of a gauge-group representation of the fermion. A simple argument shows that the anomaly vanishes for an irreducible representation expressed by a Young tableau whose number of boxes is a multiple of $L^2$ (such as the adjoint representation) and for a tensor-product of them. We also evaluate the anomaly for general gauge-group representations in the large $N$ limit. The large $N$ limit exhibits expected algebraic properties as the axial anomaly. Nevertheless, when the gauge group is $SU(N)$, it does not have a structure such as the trace of a product of traceless gauge-group generators which is expected from the corresponding gauge field theory.
52 - O. Baer 2002
The spectral flow of the overlap operator is computed numerically along a particular path in gauge field space. The path connects two gauge equivalent configurations which differ by a gauge transformation in the non-trivial class of pi_4(SU(2)). The computation is done with the SU(2) gauge field in the fundamental, the 3/2, and the 5/2 representation. The number of eigenvalue pairs that change places along this path is established for these three representations and an even-odd pattern predicted by Witten is verified.
We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum.
Equations of motion for the light-like QCD Wilson loops are studied in the generalized loop space (GLS) setting. To this end, the classically conformal-invariant non-local variations of the cusped Wilson exponentials lying (partially) on the light-cone are formulated in terms of the Frechet derivative. The rapidity and renormalization-group behaviour of the gauge-invariant quantum correlation functions (in particular, the three-dimensional parton densities) are demonstrated to be connected to certain geometrical properties of the Wilson loops defined in the GLS.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا