Do you want to publish a course? Click here

Symmetry broken states in an ensemble of globally coupled pendulums

77   0   0.0 ( 0 )
 Added by Maxim Bolotov I.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the rotational dynamics in an ensemble of globally coupled identical pendulums. This model is essentially a generalization of the standard Kuramoto model, which takes into account the inertia and the intrinsic nonlinearity of the community elements. There exists the wide variety of in-phase and out-of-phase regimes. Many of these states appear due to broken symmetry. In the case of small dissipation our theoretical analysis allows one to find the boundaries of the instability domain of in-phase rotational mode for ensembles with arbitrary number of pendulums, describe all arising out-of-phase rotation modes and study in detail their stability. For the system of three elements parameter sets corresponding to the unstable in-phase rotations we find a number of out-of-phase regimes and investigate their stability and bifurcations both analytically and numerically. As a result, we obtain a sufficiently detailed picture of the symmetry breaking and existence of various regular and chaotic states.



rate research

Read More

Forced oscillation of a system composed of two pendulums coupled by a spring in the presence of damping is investigated. In the steady state and within the small angle approximation we solve the system equations of motion and obtain the amplitudes and phases of in terms of the frequency of the sinusoidal driving force. The resonance frequencies are obtained and the amplitude ratio is discussed in details. Contrary to a single oscillator, in this two-degree of freedom system four resonant frequencies, which are close to mode frequencies, appear. Within the pass-band interval the system is shown to exhibit a rich and complicated behaviour. It is shown that damping crucially affects the system properties. Under certain circumstances, the amplitude of the oscillator which is directly connected to the driving force becomes smaller than the one far from it. Particularly we show the existence of a driving frequency at which the connected oscillators amplitude goes zero.
Oscillatory systems with long-range or global coupling offer promising insight into the interplay between high-dimensional (or microscopic) chaotic motion and collective interaction patterns. Within this paper, we use Lyapunov analysis to investigate whether chimera states in globally coupled Stuart-Landau (SL) oscillators exhibit collective degrees of freedom. We compare two types of chimera states, which emerge in SL ensembles with linear and nonlinear global coupling, respectively, the latter introducing a constraint that conserves the oscillation of the mean. Lyapunov spectra reveal that for both chimera states the Lyapunov exponents split into different groups with different convergence properties in the limit of large system size. Furthermore, in both cases the Lyapunov dimension is found to scale extensively and the localization properties of covariant Lypunov vectors manifest the presence of collective Lyapunov modes. Here, however, we find qualitative differences between the two types of chimera states: Whereas the ones in the system under nonlinear global coupling exhibit only slow collective modes corresponding to Lyapunov exponents equal or close to zero, those which experience the linear mean-field coupling exhibit also faster collective modes associated with Lyapunov exponents with large positive or negative values.
We investigate the processes of synchronization and phase ordering in a system of globally coupled maps possessing bistable, chaotic local dynamics. The stability boundaries of the synchronized states are determined on the space of parameters of the system. The collective properties of the system are characterized by means of the persistence probability of equivalent spin variables that define two phases, and by a magnetization-like order parameter that measures the phase-ordering behavior. As a consequence of the global interaction, the persistence probability saturates for all values of the coupling parameter, in contrast to the transition observed in the temporal behavior of the persistence in coupled maps on regular lattices. A discontinuous transition from a non-ordered state to a collective phase-ordered state takes place at a critical value of the coupling. On an interval of the coupling parameter, we find three distinct realizations of the phase-ordered state, which can be discerned by the corresponding values of the saturation persistence. Thus, this statistical quantity can provide information about the transient behaviors that lead to the different phase configurations in the system. The appearance of disordered and phase-ordered states in the globally coupled system can be understood by calculating histograms and the time evolution of local map variables associated to the these collective states.
Many studies of synchronization properties of coupled oscillators, based on the classical Kuramoto approach, focus on ensembles coupled via a mean field. Here we introduce a setup of Kuramoto-type phase oscillators coupled via two mean fields. We derive stability properties of the incoherent state and find traveling wave solutions with different locking patterns; stability properties of these waves are found numerically. Mostly nontrivial states appear when the two fields compete, i.e. one tends to synchronize oscillators while the other one desynchronizes them. Here we identify normal branches which bifurcate from the incoherent state in a usual way, and anomalous branches, appearance of which cannot be described as a bifurcation. Furthermore, hybrid branches combining properties of both are described. In the situations where no stable traveling wave exists, modulated quasiperiodic in time dynamics is observed. Our results indicate that a competition between two coupling channels can lead to a complex system behavior, providing a potential generalized framework for understanding of complex phenomena in natural oscillatory systems.
We analyze the problem of how different ground states associated to the same set of the Hamiltonian parameters evolve after a sudden quench. To realize our analysis we define a quantitative approach to the local distinguishability between different ground states of a magnetically ordered phase in terms of the trace distance between the reduced density matrices obtained projecting two ground states in the same subset. Before the quench, regardless the particular choice of the subset, any system in a magnetically ordered phase is characterized by ground states that are locally distinguishable. On the other hand, after the quench, the maximum of the distinguishability shows an exponential decay in time. Hence, in the limit of very large time, all the informations about the particular initial ground state are lost even if the systems are integrable. We prove our claims in the framework of the magnetically ordered phases that characterize both the $XY$ model and $N$-cluster Ising models. The fact that we find similar behavior in models within different classes of symmetry makes us confident about the generality of our results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا