Do you want to publish a course? Click here

Crystalline optical cavity at 4 K with thermal noise limited instability and ultralow drift

154   0   0.0 ( 0 )
 Added by John M. Robinson
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Crystalline optical cavities are the foundation of todays state-of-the-art ultrastable lasers. Building on our previous silicon cavity effort, we now achieve the fundamental thermal noise-limited stability for a 6 cm long silicon cavity cooled to 4 Kelvin, reaching $6.5times10^{-17}$ from 0.8 to 80 seconds. We also report for the first time a clear linear dependence of the cavity frequency drift on the incident optical power. The lowest fractional frequency drift of $-3times10^{-19}$/s is attained at a transmitted power of 40 nW, with an extrapolated drift approaching zero in the absence of optical power. These demonstrations provide a promising direction to reach a new performance domain for stable lasers, with stability better than $1times10^{-17}$ and fractional linear drift below $1times10^{-19}$/s.



rate research

Read More

We demonstrate an easy to manufacture, 25 mm long ultra-stable optical reference cavity for transportable photonic microwave generation systems. Employing a rigid holding geometry that is first-order insensitive to the squeezing force and a cavity geometry that improves the thermal noise limit at room temperature, we observe a laser phase noise that is nearly thermal noise limited for three frequency decades (1 Hz to 1 kHz offset) and supports 10 GHz generation with phase noise near -100 dBc/Hz at 1 Hz offset and <-173 dBc/Hz for all offsets >600 Hz. The fractional frequency stability reaches $2times10^{-15}$ at 0.1 s of averaging.
For photon-counting applications at ultraviolet wavelengths, there are currently no detectors that combine high efficiency (> 50%), sub-nanosecond timing resolution, and sub-Hz dark count rates. Superconducting nanowire single-photon detectors (SNSPDs) have seen success over the past decade for photon-counting applications in the near-infrared, but little work has been done to optimize SNSPDs for wavelengths below 400 nm. Here, we describe the design, fabrication, and characterization of UV SNSPDs operating at wavelengths between 250 and 370 nm. The detectors have active areas up to 56 ${mu}$m in diameter, 70 - 80% efficiency, timing resolution down to 60 ps FWHM, blindness to visible and infrared photons, and dark count rates of ~ 0.25 counts/hr for a 56 ${mu}$m diameter pixel. By using the amorphous superconductor MoSi, these UV SNSPDs are also able to operate at temperatures up to 4.2 K. These performance metrics make UV SNSPDs ideal for applications in trapped-ion quantum information processing, lidar studies of the upper atmosphere, UV fluorescent-lifetime imaging microscopy, and photon-starved UV astronomy.
Since the introduction of bolometers more than a century ago, they have been applied in a broad spectrum of contexts ranging from security and the construction industry to particle physics and astronomy. However, emerging technologies and missions call for faster bolometers with lower noise. Here, we demonstrate a nanobolometer that exhibits roughly an order of magnitude lower noise equivalent power, $20textrm{ zW}/sqrt{textrm{Hz}}$, than previously reported for any bolometer. Importantly, it is more than an order of magnitude faster than other low-noise bolometers, with a time constant of 30 $mu$s at $60textrm{ zW}/sqrt{textrm{Hz}}$. These results suggest a calorimetric energy resolution of $0.3textrm{ zJ}=htimes 0.4$ THz with a time constant of 30 $mu$s. Thus the introduced nanobolometer is a promising candidate for future applications requiring extreme precision and speed such as those in astronomy and terahertz photon counting.
We present a comparison between lens cavity filters and atomic line filters, discussing their relative merits for applications in quantum optics. We describe the design, characterization and stabilization procedure of a lens cavity filter, which consists of a high-reflection coated commercially available plano-convex lens, and compare it to an ultra-narrow atomic band-pass filter utilizing the D$_{2}$ absorption line in atomic rubidium vapor. We find that the cavity filter peak transmission frequency and bandwidth can be chosen arbitrarily but the transmission frequency is subject to thermal drift and the cavity needs stabilization to better than a few mK, while the atomic filter is intrinsically stable and tied to an atomic resonance frequency such that it can be used in a non-laboratory environment.
We report an accurate measurement of the phase noise of a thermally limited electronic oscillator at 300 K. By thermally limited we mean that the white signal-to-noise ratio of the oscillator is at or near the level generated by the thermal noise of the 50 ohm source resistor. The measurement is devoid of the anti-correlation effect that originates from the common mode power splitter in a cross-spectrum technique. The anti-correlation effect is mitigated by cooling the power splitter to a liquid helium temperature (4 K). The measurements in this paper are the first proof of theoretical claims that additive thermal noise from the splitter can be reduced significantly with cryogenic cooling and this can eliminate any anti-correlated noise introduced by use of the two-channel cross-spectrum technique. We also confirm measurements of partial anti-correlation error of (-1.3 +/- 0.6) dB that agree with theory when the splitter is at liquid nitrogen temperature of 77 K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا