Do you want to publish a course? Click here

Generation and sampling of quantum states of light in a silicon chip

93   0   0.0 ( 0 )
 Added by Stefano Paesani
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Implementing large instances of quantum algorithms requires the processing of many quantum information carriers in a hardware platform that supports the integration of different components. While established semiconductor fabrication processes can integrate many photonic components, the generation and algorithmic processing of many photons has been a bottleneck in integrated photonics. Here we report the on-chip generation and processing of quantum states of light with up to eight photons in quantum sampling algorithms. Switching between different optical pumping regimes, we implement the Scattershot, Gaussian and standard boson sampling protocols in the same silicon chip, which integrates linear and nonlinear photonic circuitry. We use these results to benchmark a quantum algorithm for calculating molecular vibronic spectra. Our techniques can be readily scaled for the on-chip implementation of specialised quantum algorithms with tens of photons, pointing the way to efficiency advantages over conventional computers.



rate research

Read More

Integrated optical devices may replace bulk crystal or fiber based assemblies with a more compact and controllable photon pair and heralded single photon source and generate quantum light at telecommunications wavelengths. Here, we propose that a periodic waveguide consisting of a sequence of optical resonators may outperform conventional waveguides or single resonators and generate more than 1 Giga-pairs per second from a sub-millimeter-long room-temperature silicon device, pumped with only about 10 milliwatts of optical power. Furthermore, the spectral properties of such devices provide novel opportunities of wavelength-division multiplexed chip-scale quantum light sources.
We demonstrate the generation and demultiplexing of quantum correlated photons on a monolithic photonic chip composed of silicon and silica-based waveguides. Photon pairs generated in a nonlinear silicon waveguide are successfully separated into two optical channels of an arrayed-waveguide grating fabricated on a silica-based waveguide platform.
General purpose quantum computers can, in principle, entangle a number of noisy physical qubits to realise composite qubits protected against errors. Architectures for measurement-based quantum computing intrinsically support error-protected qubits and are the most viable approach for constructing an all-photonic quantum computer. Here we propose and demonstrate an integrated silicon photonic architecture that both entangles multiple photons, and encodes multiple physical qubits on individual photons, to produce error-protected qubits. We realise reconfigurable graph states to compare several schemes with and without error-correction encodings and implement a range of quantum information processing tasks. We observe a success rate increase from 62.5% to 95.8% when running a phase estimation algorithm without and with error protection, respectively. Finally, we realise hypergraph states, which are a generalised class of resource states that offer protection against correlated errors. Our results show how quantum error-correction encodings can be implemented with resource-efficient photonic architectures to improve the performance of quantum algorithms.
122 - Adeline Orieux 2013
We demonstrate the generation of polarization-entangled photon pairs at room temperature and telecom wavelength in a AlGaAs semiconductor waveguide. The source is based on spontaneous parametric down conversion with a counterpropagating phase-matching scheme. The quality of the two-photon state is assessed by the reconstruction of the density matrix giving a raw fidelity to a Bell state of 0.83; a theoretical model, taking into account the experimental parameters, provides ways to understand and control the amount of entanglement. Its compatibility with electrical injection, together with the high versatility of the generated two-photon state, make this source an attractive candidate for completely integrated quantum photonics devices.
Entanglement is a counterintuitive feature of quantum physics that is at the heart of quantum technology. High-dimensional quantum states offer unique advantages in various quantum information tasks. Integrated photonic chips have recently emerged as a leading platform for the generation, manipulation and detection of entangled photons. Here, we report a silicon photonic chip that uses novel interferometric resonance-enhanced photon-pair sources, spectral demultiplexers and high-dimensional reconfigurable circuitries to generate, manipulate and analyse path-entangled three-dimensional qutrit states. By minimizing on-chip electrical and thermal cross-talk, we obtain high-quality quantum interference with visibilities above 96.5% and a maximumly entangled qutrit state with a fidelity of 95.5%. We further explore the fundamental properties of entangled qutrits to test quantum nonlocality and contextuality, and to implement quantum simulations of graphs and high-precision optical phase measurements. Our work paves the path for the development of multiphoton high-dimensional quantum technologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا