No Arabic abstract
We demonstrate the generation of polarization-entangled photon pairs at room temperature and telecom wavelength in a AlGaAs semiconductor waveguide. The source is based on spontaneous parametric down conversion with a counterpropagating phase-matching scheme. The quality of the two-photon state is assessed by the reconstruction of the density matrix giving a raw fidelity to a Bell state of 0.83; a theoretical model, taking into account the experimental parameters, provides ways to understand and control the amount of entanglement. Its compatibility with electrical injection, together with the high versatility of the generated two-photon state, make this source an attractive candidate for completely integrated quantum photonics devices.
The ability to induce, observe and control quantum coherent interactions in room temperature, electrically driven optoelectronic devices is of outmost significance for advancing quantum science and engineering towards practical applications. We demonstrate here a quantum interference phenomena, Ramsey fringes, in an inhomogeneously broadened InAs/InP quantum dot (QD) ensemble in the form of a 1.5 mm long optical amplifier operating at room temperature. Observation of Ramsey fringes in semiconductor QD was previously achieved only at cryogenic temperatures and only in isolated single dot systems. A high-resolution pump probe scheme where both pulses are characterized by cross frequency resolved optical gating (X-FROG) reveals a clear oscillatory behavior both in the amplitude and the instantaneous frequency of the probe pulse with a period that equals one optical cycle at operational wavelength. Using nominal input delays of 600 to 900 fs and scanning the separation around each delay in 1 fs steps, we map the evolution of the material de-coherence and extract a coherence time. Moreover we notice a unique phenomenon, which can not be observed in single dot systems, that the temporal position of the output probe pulse also oscillates with the same periodicity but with a quarter cycle delay relative to the intensity variations. This delay is the time domain manifestation of coupling between the real and imaginary parts of the complex susceptibility.
Implementing large instances of quantum algorithms requires the processing of many quantum information carriers in a hardware platform that supports the integration of different components. While established semiconductor fabrication processes can integrate many photonic components, the generation and algorithmic processing of many photons has been a bottleneck in integrated photonics. Here we report the on-chip generation and processing of quantum states of light with up to eight photons in quantum sampling algorithms. Switching between different optical pumping regimes, we implement the Scattershot, Gaussian and standard boson sampling protocols in the same silicon chip, which integrates linear and nonlinear photonic circuitry. We use these results to benchmark a quantum algorithm for calculating molecular vibronic spectra. Our techniques can be readily scaled for the on-chip implementation of specialised quantum algorithms with tens of photons, pointing the way to efficiency advantages over conventional computers.
Efficient sources of many-partite non-classical states are key for the advancement of quantum technologies and for the fundamental testing of quantum mechanics. We demonstrate the generation of time-correlated photon triplets at telecom wavelengths via pulsed cascaded parametric down-conversion in a monolithically integrated source. By detecting the generated states with success probabilities of $(6.25pm1.09)times10^{-11}$ per pump pulse at injected powers as low as $10;mumathrm{W}$, we benchmark the efficiency of the complete system and deduce its high potential for scalability. Our source is unprecedentedly long-term stable, it overcomes interface losses intrinsically due to its monolithic architecture, and the photon-triplet states dominate uncorrelated noise significantly. These results mark crucial progress towards the proliferation of robust, scalable, synchronized and miniaturized quantum technology.
Integrated optical devices may replace bulk crystal or fiber based assemblies with a more compact and controllable photon pair and heralded single photon source and generate quantum light at telecommunications wavelengths. Here, we propose that a periodic waveguide consisting of a sequence of optical resonators may outperform conventional waveguides or single resonators and generate more than 1 Giga-pairs per second from a sub-millimeter-long room-temperature silicon device, pumped with only about 10 milliwatts of optical power. Furthermore, the spectral properties of such devices provide novel opportunities of wavelength-division multiplexed chip-scale quantum light sources.
Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, textit{i.e.}, non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5$pm$8% and 95.0$pm$8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.