Do you want to publish a course? Click here

The Next Generation Virgo Cluster Survey. XXIII. Fundamentals of nuclear star clusters over seven decades in galaxy mass

118   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using deep, high resolution optical imaging from the Next Generation Virgo Cluster Survey we study the properties of nuclear star clusters (NSCs) in a sample of nearly 400 quiescent galaxies in the core of Virgo with stellar masses $10^{5}lesssim M_{*}/M_{odot} lesssim10^{12}$. The nucleation fraction reaches a peak value $f_{n}approx90%$ for $M_{*} approx 10^{9} M_{odot}$ galaxies and declines for both higher and lower masses, but nuclei populate galaxies as small as $M_{*} approx5times10^{5} M_{odot}$. Comparison with literature data for nearby groups and clusters shows that at the low-mass end nucleation is more frequent in denser environments. The NSC mass function peaks at $M_{NSC}approx7times10^{5} M_{odot}$, a factor 3-4 times larger than the turnover mass for globular clusters (GCs). We find a nonlinear relation between the stellar masses of NSCs and of their host galaxies, with a mean nucleus-to-galaxy mass ratio that drops to $M_{NSC}/M_{*}approx3.6times10^{-3}$ for $M_{*} approx 5times10^{9} M_{odot}$ galaxies. Nuclei in both more and less massive galaxies are much more prominent: $M_{NSC}propto M_{*}^{0.46}$ at the low-mass end, where nuclei are nearly 50% as massive as their hosts. We measure an intrinsic scatter in NSC masses at fixed galaxy stellar mass of 0.4 dex, which we interpret as evidence that the process of NSC growth is significantly stochastic. At low galaxy masses we find a close connection between NSCs and GC systems, including a very similar occupation distribution and comparable total masses. We discuss these results in the context of current dissipative and dissipationless models of NSC formation.



rate research

Read More

We report on a large-scale study of the distribution of globular clusters (GCs) throughout the Virgo cluster, based on photometry from the Next Generation Virgo Cluster Survey, a large imaging survey covering Virgos primary subclusters to their virial radii. Using the g, (g-i) color-magnitude diagram of unresolved and marginally-resolved sources, we constructed 2-D maps of the GC distribution. We present the clearest evidence to date showing the difference in concentration between red and blue GCs over the extent of the cluster, where the red (metal-rich) GCs are largely located around the massive early-type galaxies, whilst the blue (metal-poor) GCs have a more extended spatial distribution, with significant populations present beyond 83 (215 kpc) along the major axes of M49 and M87. The GC distribution around M87 and M49 shows remarkable agreement with the shape, ellipticity and boxiness of the diffuse light surrounding both galaxies. We find evidence for spatial enhancements of GCs surrounding M87 that may be indicative of recent interactions or an ongoing merger history. We compare the GC map to the locations of Virgo galaxies and the intracluster X-ray gas, and find good agreement between these baryonic structures. The Virgo cluster contains a total population of 67300$pm$14400 GCs, of which 35% are located in M87 and M49 alone. We compute a cluster-wide specific frequency S_N,CL=$2.8pm0.7$, including Virgos diffuse light. The GC-to-baryonic mass fraction is e_b=$5.7pm1.1times10^{-4} $and the GC-to-total cluster mass formation efficiency is e_t=$2.9pm0.5times10^{-5}$, values slightly lower than, but consistent with, those derived for individual galactic halos. Our results show that the production of the complex structures in the unrelaxed Virgo cluster core (including the diffuse intracluster light) is an ongoing process.(abridged)
We build a background cluster candidate catalog from the Next Generation Virgo Cluster Survey, using our detection algorithm RedGOLD. The NGVS covers 104$deg^2$ of the Virgo cluster in the $u^*,g,r,i,z$-bandpasses to a depth of $ g sim 25.7$~mag (5$sigma$). Part of the survey was not covered or has shallow observations in the $r$--band. We build two cluster catalogs: one using all bandpasses, for the fields with deep $r$--band observations ($sim 20 deg^2$), and the other using four bandpasses ($u^*,g,i,z$) for the entire NGVS area. Based on our previous CFHT-LS W1 studies, we estimate that both of our catalogs are $sim100%$($sim70%$) complete and $sim80%$ pure, at $zle 0.6$($zlesssim1$), for galaxy clusters with masses of $Mgtrsim10^{14} M_{odot}$. We show that when using four bandpasses, though the photometric redshift accuracy is lower, RedGOLD detects massive galaxy clusters up to $zsim 1$ with completeness and purity similar to the five-band case. This is achieved when taking into account the bias in the richness estimation, which is $sim40%$ lower at $0.5le z<0.6$ and $sim20%$ higher at $0.6<z< 0.8$, with respect to the five-band case. RedGOLD recovers all the X-ray clusters in the area with mass $M_{500} > 1.4 times 10^{14} rm M_{odot}$ and $0.08<z<0.5$. Because of our different cluster richness limits and the NGVS depth, our catalogs reach to lower masses than the published redMaPPer cluster catalog over the area, and we recover $sim 90-100%$ of its detections.
The occurrence of planetary nebulae (PNe) in globular clusters (GCs) provides an excellent chance to study low-mass stellar evolution in a special (low-metallicity, high stellar density) environment. We report a systematic spectroscopic survey for the [O{sc iii}] 5007 emission line of PNe in 1469 Virgo GCs and 121 Virgo ultra-compact dwarfs (UCDs), mainly hosted in the giant elliptical galaxies M87, M49, M86, and M84. We detected zero PNe in our UCD sample and discovered one PN ($M_{5007} = -4.1$ mag) associated with an M87 GC. We used the [O{sc iii}] detection limit for each GC to estimate the luminosity-specific frequency of PNe, $alpha$, and measured $alpha$ in the Virgo cluster GCs to be $alpha sim 3.9_{-0.7}^{+5.2}times 10^{-8}mathrm{PN}/L_odot$. $alpha$ in Virgo GCs is among the lowest values reported in any environment, due in part to the large sample size, and is 5--6 times lower than that for the Galactic GCs. We suggest that $alpha$ decreases towards brighter and more massive clusters, sharing a similar trend as the binary fraction, and the discrepancy between the Virgo and Galactic GCs can be explained by the observational bias in extragalactic surveys toward brighter GCs. This low but non-zero efficiency in forming PNe may highlight the important role played by binary interactions in forming PNe in GCs. We argue that a future survey of less massive Virgo GCs will be able to determine whether PN production in Virgo GCs is governed by internal process (mass, density, binary fraction), or is largely regulated by external environment.
We apply the empirical galaxy--halo connection model UniverseMachine to dark matter-only zoom-in simulations of isolated Milky Way (MW)--mass halos along with their parent cosmological simulations. This application extends textsc{UniverseMachine} predictions into the ultra-faint dwarf galaxy regime ($ 10^{2},mathrm{M_{odot}} leqslant M_{ast} leqslant 10^{5},mathrm{M_{odot}}$) and yields a well-resolved stellar mass--halo mass (SMHM) relation over the peak halo mass range $10^8,mathrm{M_{odot}}$ to $10^{15},mathrm{M_{odot}}$. The extensive dynamic range provided by the zoom-in simulations allows us to assess specific aspects of dwarf galaxy evolution predicted by textsc{UniverseMachine}. In particular, although UniverseMachine is not constrained for dwarf galaxies with $M_* lesssim 10^{8},mathrm{M_{odot}}$, our predicted SMHM relation is consistent with that inferred for MW satellite galaxies at $z=0$ using abundance matching. However, UniverseMachine predicts that nearly all galaxies are actively star forming below $M_{ast}sim 10^{7},mathrm{M_{odot}}$ and that these systems typically form more than half of their stars at $zlesssim 4$, which is discrepant with the star formation histories of Local Group dwarf galaxies that favor early quenching. This indicates that the current UniverseMachine model does not fully capture galaxy quenching physics at the low-mass end. We highlight specific improvements necessary to incorporate environmental and reionization-driven quenching for dwarf galaxies, and provide a new tool to connect dark matter accretion to star formation over the full dynamic range that hosts galaxies.
Intra-cluster (IC) populations are expected to be a natural result of the hierarchical assembly of clusters, yet their low space densities make them difficult to detect and study. We present the first definitive kinematic detection of an IC population of globular clusters (GCs) in the Virgo cluster, around the central galaxy, M87. This study focuses on the Virgo core for which the combination of NGVS photometry and follow-up spectroscopy allows us to reject foreground star contamination and explore GC kinematics over the full Virgo dynamical range. The GC kinematics changes gradually with galactocentric distance, decreasing in mean velocity and increasing in velocity dispersion, eventually becoming indistinguishable from the kinematics of Virgo dwarf galaxies at $mathrm{R>320, kpc}$. By kinematically tagging M87 halo and intra-cluster GCs we find that 1) the M87 halo has a smaller fraction ($52pm3%$) of blue clusters with respect to the IC counterpart ($77pm10%$), 2) the $(g-r)_{0}$ vs $(i-z)_{0}$ color-color diagrams reveal a galaxy population that is redder than the IC population that may be due to a different composition in chemical abundance and progenitor mass, and 3) the ICGC distribution is shallower and more extended than the M87 GCs, yet still centrally concentrated. The ICGC specific frequency, $S_{N,mathrm{ICL}}=10.2pm4.8$, is consistent with what is observed for the population of quenched, low-mass galaxies within 1~Mpc from the clusters center. The IC population at Virgos center is thus consistent with being an accreted component from low-mass galaxies tidally stripped or disrupted through interactions, with a total mass of $mathrm{M_{ICL,tot}=10.8pm0.1times10^{11}M_{odot}}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا