Do you want to publish a course? Click here

Network architecture of energy landscapes in mesoscopic quantum systems

513   0   0.0 ( 0 )
 Added by Lee Bassett
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mesoscopic quantum systems exhibit complex many-body quantum phenomena, where interactions between spins and charges give rise to collective modes and topological states. Even simple, non-interacting theories display a rich landscape of energy states --- distinct many-particle configurations connected by spin- and energy-dependent transition rates. The collective energy landscape is difficult to characterize or predict, especially in regimes of frustration where many-body effects create a multiply degenerate landscape. Here we use network science to characterize the complex interconnection patterns of these energy-state transitions. Using an experimentally verified computational model of electronic transport through quantum antidots, we construct networks where nodes represent accessible energy states and edges represent allowed transitions. We then explore how physical changes in currents and voltages are reflected in the network topology. We find that the networks exhibit Rentian scaling, which is characteristic of efficient transportation systems in computer circuitry, neural circuitry, and human mobility, and can be used to measure the interconnection complexity of a network. Remarkably, networks corresponding to points of frustration in quantum transport (due, for example, to spin-blockade effects) exhibit an enhanced topological complexity relative to networks not experiencing frustration. Our results demonstrate that network characterizations of the abstract topological structure of energy landscapes can capture salient properties of quantum transport. More broadly, our approach motivates future efforts to use network science in understanding the dynamics and control of complex quantum systems.



rate research

Read More

Spectroscopy is a powerful tool to probe physical, chemical, and biological systems. Recent advances in microfabrication have introduced novel, intriguing mesoscopic quantum systems including superconductor-semiconductor hybrid devices and topologically non-trivial electric circuits. A sensitive, general purpose spectrometer to probe the energy levels of these systems is lacking. We propose an on-chip absorption spectrometer functioning well into the millimeter wave band which is based on a voltage-biased superconducting quantum interference device. We demonstrate the capabilities of the spectrometer by coupling it to a variety of superconducting systems, probing phenomena such as quasiparticle and plasma excitations. We perform spectroscopy of a microscopic tunable non-linear resonator in the 40-50 GHz range and measure transitions to highly excited states. The Josephson junction spectrometer, with unprecedented frequency range, sensitivity, and coupling strength will enable new experiments in linear and non-linear spectroscopy of novel mesoscopic systems.
We examine energy transport in an ensemble of closed quantum systems driven by stochastic perturbations. One can show that the probability and energy fluxes can be described in terms of quantum advection modes (QAM) associated with the off-diagonal elements of the density matrix. These QAM play the role of Landauer channels in a system with discrete energy spectrum and the eigenfunctions that cannot be described as plane waves. In order to determine the type of correlations that exist between the direction and magnitudes of each QAM and the average direction of energy and probability fluxes we have numerically solved the time-dependent Schr{o}dinger equation describing a single particle trapped in a parabolic potential well which is perturbed by stochastic ripples. The ripples serve as a localized energy source and are offset to one side of the potential well. As the result a non-zero net energy flux flows from one part of the potential well to another across the symmetry center of the potential. We find that some modes exhibit positive correlation with the direction of the energy flow. Other modes, that carry a smaller energy per unit of the probability flux, anticorrelate with the energy flow and thus provide a backflow of the probability. The overall picture of energy transport that emerges from our results is very different from the conventional one based on a system with continuous energy spectrum.
We present a new scheme to detect the quantum shot noise in coupled mesoscopic systems. By applying the noise thermometry to the capacitively coupled quantum point contacts (QPCs) we prove that the noise temperature of one QPC is in perfect proportion to that of the other QPC which is driven to non-equilibrium to generate quantum shot noise. We also found an unexpected effect that the noise in the source QPC is remarkably suppressed possibly due to the cooling effect by the detector QPC.
The emerging field of twistronics, which harnesses the twist angle between two-dimensional materials, represents a promising route for the design of quantum materials, as the twist-angle-induced superlattices offer means to control topology and strong correlations. At the small twist limit, and particularly under strain, as atomic relaxation prevails, the emergent moire superlattice encodes elusive insights into the local interlayer interaction. Here we introduce moire metrology as a combined experiment-theory framework to probe the stacking energy landscape of bilayer structures at the 0.1 meV/atom scale, outperforming the gold-standard of quantum chemistry. Through studying the shapes of moire domains with numerous nano-imaging techniques, and correlating with multi-scale modelling, we assess and refine first-principle models for the interlayer interaction. We document the prowess of moire metrology for three representative twisted systems: bilayer graphene, double bilayer graphene and H-stacked $MoSe_2/WSe_2$. Moire metrology establishes sought after experimental benchmarks for interlayer interaction, thus enabling accurate modelling of twisted multilayers.
We compare and contrast magneto-transport oscillations in the fully quantum (single-electron coherent) and classical limits for a simple but illustrative model. In particular, we study the induced magnetization and spin current in a two-terminal double-barrier structure with an applied Zeeman field between the barriers and spin disequilibrium in the contacts. Classically, the spin current shows strong tunneling resonances due to spin precession in the region between the two barriers. However, these oscillations are distinguishable from those in the fully coherent case, for which a proper treatment of the electron phase is required. We explain the differences in terms of the presence or absence of coherent multiple wave reflections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا