Do you want to publish a course? Click here

Superconducting on-chip spectrometer for mesoscopic quantum systems

204   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spectroscopy is a powerful tool to probe physical, chemical, and biological systems. Recent advances in microfabrication have introduced novel, intriguing mesoscopic quantum systems including superconductor-semiconductor hybrid devices and topologically non-trivial electric circuits. A sensitive, general purpose spectrometer to probe the energy levels of these systems is lacking. We propose an on-chip absorption spectrometer functioning well into the millimeter wave band which is based on a voltage-biased superconducting quantum interference device. We demonstrate the capabilities of the spectrometer by coupling it to a variety of superconducting systems, probing phenomena such as quasiparticle and plasma excitations. We perform spectroscopy of a microscopic tunable non-linear resonator in the 40-50 GHz range and measure transitions to highly excited states. The Josephson junction spectrometer, with unprecedented frequency range, sensitivity, and coupling strength will enable new experiments in linear and non-linear spectroscopy of novel mesoscopic systems.

rate research

Read More

We present a method for measuring the internal state of a superconducting qubit inside an on-chip microwave resonator. We show that one qubit state can be associated with the generation of an increasingly large cavity coherent field, while the other remains associated with the vacuum. By measuring the outgoing resonator field with conventional devices, an efficient single-shot QND-like qubit readout can be achieved, enabling a high-fidelity measurement in the spirit of the electron-shelving technique for trapped ions. We expect that the proposed ideas can be adapted to different superconducting qubit designs and contribute to the further improvement of qubit readout fidelity.
79 - M. Blaauboer 2002
We derive a general scattering-matrix formula for the pumped current through a mesoscopic region attached to a normal and a superconducting lead. As applications of this result we calculate the current pumped through (i) a pump in a wire, (ii) a quantum dot in the Coulomb blockade regime, and (iii) a ballistic double-barrier junction, all coupled to a superconducting lead. Andreev reflection is shown to enhance the pumped current by up to a factor of 4 in case of equal coupling to the leads. We find that this enhancement can still be further increased for slightly asymmetric coupling.
Heat management and refrigeration are key concepts for nanoscale devices operating at cryogenic temperatures. The design of an on-chip mesoscopic refrigerator that works thanks to the input heat is presented, thus realizing a solid state implementation of the concept of cooling by heating. The system consists of a circuit featuring a thermoelectric element based on a ferromagnetic insulator-superconductor tunnel junction (N-FI-S) and a series of two normal metal-superconductor tunnel junctions (SINIS). The N-FI-S element converts the incoming heat in a thermovoltage, which is applied to the SINIS, thereby yielding cooling. The coolers performance is investigated as a function of the input heat current for different bath temperatures. We show that this system can efficiently employ the performance of SINIS refrigeration, with a substantial cooling of the normal metal island. Its scalability and simplicity in the design makes it a promising building block for low-temperature on-chip energy management applications.
We report a low temperature measurement technique and magnetization data of a quantum molecular spin, by implementing an on-chip SQUID technique. This technique enables the SQUID magnetometery in high magnetic fields, up to 7 Tesla. The main challenges and the calibration process are detailed. The measurement protocol is used to observe quantum tunneling jumps of the S=10 molecular magnet, Mn12-tBuAc. The effect of transverse field on the tunneling splitting for this molecular system is addressed as well.
107 - H. Jirari , F.W.J. Hekking , 2009
We consider a current-biased dc SQUID in the presence of an applied time-dependent bias current or magnetic flux. The phase dynamics of such a Josephson device is equivalent to that of a quantum particle trapped in a $1-$D anharmonic potential, subject to external time-dependent control fields, {it i.e.} a driven multilevel quantum system. The problem of finding the required time-dependent control field that will steer the system from a given initial state to a desired final state at a specified final time is formulated in the framework of optimal control theory. Using the spectral filter technique, we show that the selected optimal field which induces a coherent population transfer between quantum states is represented by a carrier signal having a constant frequency but which is time-varied both in amplitude and phase. The sensitivity of the optimal solution to parameter perturbations is also addressed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا