Do you want to publish a course? Click here

Linux-Tomcat Application Performance on Amazon AWS

113   0   0.0 ( 0 )
 Added by Neil J. Gunther
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The need for Linux system administrators to do performance management has returned with a vengeance. Why? The cloud. Resource consumption in the cloud is all about pay-as-you-go. This article shows you how performance models can find the most cost-effective deployment of an application on Amazons cloud.



rate research

Read More

Block devices in computer operating systems typically correspond to disks or disk partitions, and are used to store files in a filesystem. Disks are not the only real or virtual device which adhere to the block accessible stream of bytes block device model. Files, remote devices, or even RAM may be used as a virtual disks. This article examines several common combinations of block device layers used as virtual disks in the Linux operating system: disk partitions, loopback files, software RAID, Logical Volume Manager, and Network Block Devices. It measures their relative performance using different filesystems: Ext2, Ext3, ReiserFS, JFS, XFS,NFS.
Developing efficient GPU kernels can be difficult because of the complexity of GPU architectures and programming models. Existing performance tools only provide coarse-grained suggestions at the kernel level, if any. In this paper, we describe GPA, a performance advisor for NVIDIA GPUs that suggests potential code optimization opportunities at a hierarchy of levels, including individual lines, loops, and functions. To relieve users of the burden of interpreting performance counters and analyzing bottlenecks, GPA uses data flow analysis to approximately attribute measured instruction stalls to their root causes and uses information about a programs structure and the GPU to match inefficiency patterns with suggestions for optimization. To quantify each suggestions potential benefits, we developed PC sampling-based performance models to estimate its speedup. Our experiments with benchmarks and applications show that GPA provides an insightful report to guide performance optimization. Using GPA, we obtained speedups on a Volta V100 GPU ranging from 1.01$times$ to 3.53$times$, with a geometric mean of 1.22$times$.
This work examines the performance of leading-edge systems designed for machine learning computing, including the NVIDIA DGX-2, Amazon Web Services (AWS) P3, IBM Power System Accelerated Compute Server AC922, and a consumer-grade Exxact TensorEX TS4 GPU server. Representative deep learning workloads from the fields of computer vision and natural language processing are the focus of the analysis. Performance analysis is performed along with a number of important dimensions. Performance of the communication interconnects and large and high-throughput deep learning models are considered. Different potential use models for the systems as standalone and in the cloud also are examined. The effect of various optimization of the deep learning models and system configurations is included in the analysis.
Hardware platforms in high performance computing are constantly getting more complex to handle even when considering multicore CPUs alone. Numerous features and configuration options in the hardware and the software environment that are relevant for performance are not even known to most application users or developers. Microbenchmarks, i.e., simple codes that fathom a particular aspect of the hardware, can help to shed light on such issues, but only if they are well understood and if the results can be reconciled with known facts or performance models. The insight gained from microbenchmarks may then be applied to real applications for performance analysis or optimization. In this paper we investigate two modern Intel x86 server CPU architectures in depth: Broadwell EP and Cascade Lake SP. We highlight relevant hardware configuration settings that can have a decisive impact on code performance and show how to properly measure on-chip and off-chip data transfer bandwidths. The new victim L3 cache of Cascade Lake and its advanced replacement policy receive due attention. Finally we use DGEMM, sparse matrix-vector multiplication, and the HPCG benchmark to make a connection to relevant application scenarios.
The A64FX CPU is arguably the most powerful Arm-based processor design to date. Although it is a traditional cache-based multicore processor, its peak performance and memory bandwidth rival accelerator devices. A good understanding of its performance features is of paramount importance for developers who wish to leverage its full potential. We present an architectural analysis of the A64FX used in the Fujitsu FX1000 supercomputer at a level of detail that allows for the construction of Execution-Cache-Memory (ECM) performance models for steady-state loops. In the process we identify architectural peculiarities that point to viable generic optimization strategies. After validating the model using simple streaming loops we apply the insight gained to sparse matrix-vector multiplication (SpMV) and the domain wall (DW) kernel from quantum chromodynamics (QCD). For SpMV we show why the CRS matrix storage format is not a good practical choice on this architecture and how the SELL-C-sigma format can achieve bandwidth saturation. For the DW kernel we provide a cache-reuse analysis and show how an appropriate choice of data layout for complex arrays can realize memory-bandwidth saturation in this case as well. A comparison with state-of-the-art high-end Intel Cascade Lake AP and Nvidia V100 systems puts the capabilities of the A64FX into perspective. We also explore the potential for power optimizations using the tuning knobs provided by the Fugaku system, achieving energy savings of about 31% for SpMV and 18% for DW.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا