Do you want to publish a course? Click here

Characterization of the demonstrator of the fast silicon monolithic ASIC for the TT-PET project

104   0   0.0 ( 0 )
 Added by Lorenzo Paolozzi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The TT-PET collaboration is developing a small animal TOF-PET scanner based on monolithic silicon pixel sensors in SiGe BiCMOS technology. The demonstrator chip, a small-scale version of the final detector ASIC, consists of a 3 x 10 pixel matrix integrated with the front-end, a 50 ps binning TDC and read out logic. The chip, thinned down to 100 {mu}m and backside metallized, was operated at a voltage of 180 V. The tests on a beam line of minimum ionizing particles show a detection efficiency greater than 99.9 % and a time resolution down to 110 ps.



rate research

Read More

The TT-PET collaboration is developing an MRI-compatible small animal PET scanner in which the sensitive element is a monolithic silicon pixel ASIC targeting 30 ps RMS time resolution. The photon-detection technique is based on a stack of alternating layers of high-Z photon converter and 100 $mathrm{mu m}$ silicon sensors, to produce a scanner with 0.5 $mathrm{times}$ 0.5 $mathrm{times}$ 0.2 $mathrm{mm^{3}}$ granularity for precise depth-of-interaction measurement. In this paper we present the results of simulation studies for the expected data rate, time-of-flight and spatial resolution, as well as the performance of image reconstruction with and without the use of timing information.
The aim of this work is to show the potential capabilities of monolithic crystals coupled to large SiPM arrays, to be considered as detector blocks for PET scanners enabling Time Of Flight (TOF) capabilities. Monolithic blocks allow one to decode the 3D photon impact position. This approach, along with TOF information, can be of high interest in clinical Positron emission tomography (PET) applications where a typical ring configuration is used. In this manuscript, we evaluate an ASIC- based readout for digitizing all signals coming from analog photosensors. Validation results with one-to-one coupling resulted in a Coincidence Time Resolution (CTR) of 202 ps FWHM. Providing timing resolution when using detectors based on monolithic crystals is however challenging. The wide distribution of scintillation light on the photosensors causes a poor SNR, which makes the system sensible to false triggering and to time walk errors. In this direction, we present a calibration method, designed to correct all recorded timestamps and also to compensate variations in time-paths among all channels. Thereafter, a CTR improvement nearing 45% is observed for all measurements. Moreover, we show a novel approach that describes the use of averaging methods to assign a single timestamp to each gamma impact. This approach results in a further improvement of the CTR in the range of 100 ps FWHM, reaching a time resolution of 585 ps FWHM when using a large 50x50x10 mm3 LYSO scintillator coupled to an 8x8 SiPM (6x6 mm2) array. These pilot studies show detector capabilities regarding TOF information when using monolithic scintillators.
Sterile neutrinos are a minimal extension of the Standard Model of Particle Physics. A promising model-independent way to search for sterile neutrinos is via high-precision beta spectroscopy. The Karlsruhe Tritium Neutrino (KATRIN) experiment, equipped with a novel multi-pixel silicon drift detector focal plane array and read-out system, named the TRISTAN detector, has the potential to supersede the sensitivity of previous laboratory-based searches. In this work we present the characterization of the first silicon drift detector prototypes with electrons and we investigate the impact of uncertainties of the detectors response to electrons on the final sterile neutrino sensitivity.
102 - W. Krzemien , D. Alfs , P. Bialas 2015
Modern TOF-PET scanner systems require high-speed computing resources for efficient data processing, monitoring and image reconstruction. In this article we present the data flow and software architecture for the novel TOF-PET scanner developed by the J-PET collaboration. We discuss the data acquisition system, reconstruction framework and image reconstruction software. Also, the concept of computing outside hospitals in the remote centers such as Swierk Computing Centre in Poland is presented.
A detection system of the conventional PET tomograph is set-up to record data from e+ e- annihilation into two photons with energy of 511 keV, and it gives information on the density distribution of a radiopharmaceutical in the body of the object. In this paper we explore the possibility of performing the three gamma photons imaging based on ortho-positronium annihilation, as well as the possibility of positronium mean lifetime imaging with the J-PET tomograph constructed from plastic scintillators. For this purposes simulations of the ortho-positronium formation and its annihilation into three photons were performed taking into account distributions of photons momenta as predicted by the theory of quantum electrodynamics and the response of the J-PET tomograph. In order to test the proposed ortho-positronium lifetime image reconstruction method, we concentrate on the decay of the ortho-positronium into three photons and applications of radiopharmaceuticals labeled with isotopes emitting a prompt gamma quantum. The proposed method of imaging is based on the determination of hit-times and hit-positions of registered photons which enables the reconstruction of the time and position of the annihilation point as well as the lifetime of the ortho-positronium on an event-by-event basis. We have simulated the production of the positronium in a cylindrical phantom composed of a set of different materials in which the ortho-positronium lifetime varied from 2.0 ns to 3.0 ns, as expected for ortho-positronium created in the human body. The presented reconstruction method for total-body J-PET like detector allows to achieve a mean lifetime resolution of about 40 ps. Recent Positron Annihilation Lifetime Spectroscopy measurements of cancerous and healthy uterine tissues show that this sensitivity may allow to study the morphological changes in cell structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا