Do you want to publish a course? Click here

The Impact of Line Misidentification on Cosmological Constraints from Euclid and other Spectroscopic Galaxy Surveys

66   0   0.0 ( 0 )
 Added by Graeme Addison
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform forecasts for how baryon acoustic oscillation (BAO) scale and redshift-space distortion (RSD) measurements from future spectroscopic emission line galaxy (ELG) surveys such as Euclid are degraded in the presence of spectral line misidentification. Using analytic calculations verified with mock galaxy catalogs from log-normal simulations we find that constraints are degraded in two ways, even when the interloper power spectrum is modeled correctly in the likelihood. Firstly, there is a loss of signal-to-noise ratio for the power spectrum of the target galaxies, which propagates to all cosmological constraints and increases with contamination fraction, $f_c$. Secondly, degeneracies can open up between $f_c$ and cosmological parameters. In our calculations this typically increases BAO scale uncertainties at the 10-20% level when marginalizing over parameters determining the broadband power spectrum shape. External constraints on $f_c$, or parameters determining the shape of the power spectrum, for example from cosmic microwave background (CMB) measurements, can remove this effect. There is a near-perfect degeneracy between $f_c$ and the power spectrum amplitude for low $f_c$ values, where $f_c$ is not well determined from the contaminated sample alone. This has the potential to strongly degrade RSD constraints. The degeneracy can be broken with an external constraint on $f_c$, for example from cross-correlation with a separate galaxy sample containing the misidentified line, or deeper sub-surveys.



rate research

Read More

Galaxy clusters are a recent cosmological probe. The precision and accuracy of the cosmological parameters inferred from these objects are affected by the knowledge of cluster physics, entering the analysis through the mass-observable scaling relations, and the theoretical description of their mass and redshift distribution, modelled by the mass function. In this work, we forecast the impact of different modelling of these ingredients for clusters detected by future optical and near-IR surveys. We consider the standard cosmological scenario and the case with a time-dependent equation of state for dark energy. We analyse the effect of increasing accuracy on the scaling relation calibration, finding improved constraints on the cosmological parameters. This higher accuracy exposes the impact of the mass function evaluation, which is a subdominant source of systematics for current data. We compare two different evaluations for the mass function. In both cosmological scenarios, the use of different mass functions leads to biases in the parameter constraints. For the $Lambda$CDM model, we find a $1.6 , sigma$ shift in the $(Omega_m,sigma_8)$ parameter plane and a discrepancy of $sim 7 , sigma$ for the redshift evolution of the scatter of the scaling relations. For the scenario with a time-evolving dark energy equation of state, the assumption of different mass functions results in a $sim 8 , sigma$ tension in the $w_0$ parameter. These results show the impact, and the necessity for a precise modelling, of the interplay between the redshift evolution of the mass function and of the scaling relations in the cosmological analysis of galaxy clusters.
We use HII starburst galaxy apparent magnitude measurements to constrain cosmological parameters in six cosmological models. A joint analysis of HII galaxy, quasar angular size, baryon acoustic oscillations peak length scale, and Hubble parameter measurements result in relatively model-independent and restrictive estimates of the current values of the non-relativistic matter density parameter $Omega_{rm m_0}$ and the Hubble constant $H_0$. These estimates favor a 2.0$sigma$ to 3.4$sigma$ (depending on cosmological model) lower $H_0$ than what is measured from the local expansion rate. The combined data are consistent with dark energy being a cosmological constant and with flat spatial hypersurfaces, but do not strongly rule out mild dark energy dynamics or slightly non-flat spatial geometries.
We compare the constraints from two (2019 and 2021) compilations of HII starburst galaxy (HIIG) data and test the model-independence of quasar angular size (QSO) data using six spatially flat and non-flat cosmological models. We find that the new 2021 compilation of HIIG data generally provides tighter constraints and prefers lower values of cosmological parameters than those from the 2019 HIIG data. QSO data by themselves give relatively model-independent constraints on the characteristic linear size, $l_{rm m}$, of the QSOs within the sample. We also use Hubble parameter ($H(z)$), baryon acoustic oscillation (BAO), Pantheon Type Ia supernova (SN Ia) apparent magnitude (SN-Pantheon), and DES-3yr binned SN Ia apparent magnitude (SN-DES) measurements to perform joint analyses with HIIG and QSO angular size data, since their constraints are not mutually inconsistent within the six cosmological models we study. A joint analysis of $H(z)$, BAO, SN-Pantheon, SN-DES, QSO, and the newest compilation of HIIG data provides almost model-independent summary estimates of the Hubble constant, $H_0=69.7pm1.2 rm{km s^{-1} Mpc^{-1}}$, the non-relativistic matter density parameter, $Omega_{rm m_0}=0.293pm0.021$, and $l_{rm m}=10.93pm0.25$ pc.
The total mass of a galaxy cluster is one of its most fundamental properties. Together with the redshift, the mass links observation and theory, allowing us to use the cluster population to test models of structure formation and to constrain cosmological parameters. Building on the rich heritage from X-ray surveys, new results from Sunyaev-Zeldovich and optical surveys have stimulated a resurgence of interest in cluster cosmology. These studies have generally found fewer clusters than predicted by the baseline Planck LCDM model, prompting a renewed effort on the part of the community to obtain a definitive measure of the true cluster mass scale. Here we review recent progress on this front. Our theoretical understanding continues to advance, with numerical simulations being the cornerstone of this effort. On the observational side, new, sophisticated techniques are being deployed in individual mass measurements and to account for selection biases in cluster surveys. We summarise the state of the art in cluster mass estimation methods and the systematic uncertainties and biases inherent in each approach, which are now well identified and understood, and explore how current uncertainties propagate into the cosmological parameter analysis. We discuss the prospects for improvements to the measurement of the mass scale using upcoming multi-wavelength data, and the future use of the cluster population as a cosmological probe.
The main energy-generating mechanisms in galaxies are black hole (BH) accretion and star formation (SF) and the interplay of these processes is driving the evolution of galaxies. MIR/FIR spectroscopy are able to distinguish between BH accretion and SF, as it was shown in the past by infrared spectroscopy from the space by the Infrared Space Observatory and Spitzer. Spitzer and Herschel spectroscopy together can trace the AGN and the SF components in galaxies, with extinction free lines, almost only in the local Universe, except for a few distant objects. One of the major goals of the study of galaxy evolution is to understand the history of the luminosity source of galaxies along cosmic time. This goal can be achieved with far-IR spectroscopic cosmological surveys. SPICA in combination with ground based large single dish submillimeter telescopes, such as CCAT, will offer a unique opportunity to do this. We use galaxy evolution models linked to the observed MIR-FIR counts (including Herschel) to predict the number of sources and their IR lines fluxes, as derived from observations of local galaxies. A shallow survey in an area of 0.5 square degrees, with a typical integration time of 1 hour per pointing, will be able to detect thousands of galaxies in at least three emission lines, using SAFARI, the far-IR spectrometer onboard of SPICA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا