Do you want to publish a course? Click here

Learning Multiple Defaults for Machine Learning Algorithms

69   0   0.0 ( 0 )
 Added by Florian Pfisterer
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The performance of modern machine learning methods highly depends on their hyperparameter configurations. One simple way of selecting a configuration is to use default settings, often proposed along with the publication and implementation of a new algorithm. Those default values are usually chosen in an ad-hoc manner to work good enough on a wide variety of datasets. To address this problem, different automatic hyperparameter configuration algorithms have been proposed, which select an optimal configuration per dataset. This principled approach usually improves performance but adds additional algorithmic complexity and computational costs to the training procedure. As an alternative to this, we propose learning a set of complementary default values from a large database of prior empirical results. Selecting an appropriate configuration on a new dataset then requires only a simple, efficient and embarrassingly parallel search over this set. We demonstrate the effectiveness and efficiency of the approach we propose in comparison to random search and Bayesian Optimization.



rate research

Read More

Hyperparameter optimization in machine learning (ML) deals with the problem of empirically learning an optimal algorithm configuration from data, usually formulated as a black-box optimization problem. In this work, we propose a zero-shot method to meta-learn symbolic default hyperparameter configurations that are expressed in terms of the properties of the dataset. This enables a much faster, but still data-dependent, configuration of the ML algorithm, compared to standard hyperparameter optimization approaches. In the past, symbolic and static default values have usually been obtained as hand-crafted heuristics. We propose an approach of learning such symbolic configurations as formulas of dataset properties from a large set of prior evaluations on multiple datasets by optimizing over a grammar of expressions using an evolutionary algorithm. We evaluate our method on surrogate empirical performance models as well as on real data across 6 ML algorithms on more than 100 datasets and demonstrate that our method indeed finds viable symbolic defaults.
381 - Jean Feng 2020
Machine learning algorithms in healthcare have the potential to continually learn from real-world data generated during healthcare delivery and adapt to dataset shifts. As such, the FDA is looking to design policies that can autonomously approve modifications to machine learning algorithms while maintaining or improving the safety and effectiveness of the deployed models. However, selecting a fixed approval strategy, a priori, can be difficult because its performance depends on the stationarity of the data and the quality of the proposed modifications. To this end, we investigate a learning-to-approve approach (L2A) that uses accumulating monitoring data to learn how to approve modifications. L2A defines a family of strategies that vary in their optimism---where more optimistic policies have faster approval rates---and searches over this family using an exponentially weighted average forecaster. To control the cumulative risk of the deployed model, we give L2A the option to abstain from making a prediction and incur some fixed abstention cost instead. We derive bounds on the average risk of the model deployed by L2A, assuming the distributional shifts are smooth. In simulation studies and empirical analyses, L2A tailors the level of optimism for each problem-setting: It learns to abstain when performance drops are common and approve beneficial modifications quickly when the distribution is stable.
In this paper we model the problem of learning preferences of a population as an active learning problem. We propose an algorithm can adaptively choose pairs of items to show to users coming from a heterogeneous population, and use the obtained reward to decide which pair of items to show next. We provide computationally efficient algorithms with provable sample complexity guarantees for this problem in both the noiseless and noisy cases. In the process of establishing sample complexity guarantees for our algorithms, we establish new results using a Nystr{o}m-like method which can be of independent interest. We supplement our theoretical results with experimental comparisons.
Modern supervised machine learning algorithms involve hyperparameters that have to be set before running them. Options for setting hyperparameters are default values from the software package, manual configuration by the user or configuring them for optimal predictive performance by a tuning procedure. The goal of this paper is two-fold. Firstly, we formalize the problem of tuning from a statistical point of view, define data-based defaults and suggest general measures quantifying the tunability of hyperparameters of algorithms. Secondly, we conduct a large-scale benchmarking study based on 38 datasets from the OpenML platform and six common machine learning algorithms. We apply our measures to assess the tunability of their parameters. Our results yield default values for hyperparameters and enable users to decide whether it is worth conducting a possibly time consuming tuning strategy, to focus on the most important hyperparameters and to chose adequate hyperparameter spaces for tuning.
Coding theory is a central discipline underpinning wireline and wireless modems that are the workhorses of the information age. Progress in coding theory is largely driven by individual human ingenuity with sporadic breakthroughs over the past century. In this paper we study whether it is possible to automate the discovery of decoding algorithms via deep learning. We study a family of sequential codes parameterized by recurrent neural network (RNN) architectures. We show that creatively designed and trained RNN architectures can decode well known sequential codes such as the convolutional and turbo codes with close to optimal performance on the additive white Gaussian noise (AWGN) channel, which itself is achieved by breakthrough algorithms of our times (Viterbi and BCJR decoders, representing dynamic programing and forward-backward algorithms). We show strong generalizations, i.e., we train at a specific signal to noise ratio and block length but test at a wide range of these quantities, as well as robustness and adaptivity to deviations from the AWGN setting.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا