Do you want to publish a course? Click here

Meta-Learning for Symbolic Hyperparameter Defaults

74   0   0.0 ( 0 )
 Added by Pieter Gijsbers
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Hyperparameter optimization in machine learning (ML) deals with the problem of empirically learning an optimal algorithm configuration from data, usually formulated as a black-box optimization problem. In this work, we propose a zero-shot method to meta-learn symbolic default hyperparameter configurations that are expressed in terms of the properties of the dataset. This enables a much faster, but still data-dependent, configuration of the ML algorithm, compared to standard hyperparameter optimization approaches. In the past, symbolic and static default values have usually been obtained as hand-crafted heuristics. We propose an approach of learning such symbolic configurations as formulas of dataset properties from a large set of prior evaluations on multiple datasets by optimizing over a grammar of expressions using an evolutionary algorithm. We evaluate our method on surrogate empirical performance models as well as on real data across 6 ML algorithms on more than 100 datasets and demonstrate that our method indeed finds viable symbolic defaults.



rate research

Read More

We introduce a framework based on bilevel programming that unifies gradient-based hyperparameter optimization and meta-learning. We show that an approximate version of the bilevel problem can be solved by taking into explicit account the optimization dynamics for the inner objective. Depending on the specific setting, the outer variables take either the meaning of hyperparameters in a supervised learning problem or parameters of a meta-learner. We provide sufficient conditions under which solutions of the approximate problem converge to those of the exact problem. We instantiate our approach for meta-learning in the case of deep learning where representation layers are treated as hyperparameters shared across a set of training episodes. In experiments, we confirm our theoretical findings, present encouraging results for few-shot learning and contrast the bilevel approach against classical approaches for learning-to-learn.
The performance of modern machine learning methods highly depends on their hyperparameter configurations. One simple way of selecting a configuration is to use default settings, often proposed along with the publication and implementation of a new algorithm. Those default values are usually chosen in an ad-hoc manner to work good enough on a wide variety of datasets. To address this problem, different automatic hyperparameter configuration algorithms have been proposed, which select an optimal configuration per dataset. This principled approach usually improves performance but adds additional algorithmic complexity and computational costs to the training procedure. As an alternative to this, we propose learning a set of complementary default values from a large database of prior empirical results. Selecting an appropriate configuration on a new dataset then requires only a simple, efficient and embarrassingly parallel search over this set. We demonstrate the effectiveness and efficiency of the approach we propose in comparison to random search and Bayesian Optimization.
The inaccessibility of controlled randomized trials due to inherent constraints in many fields of science has been a fundamental issue in causal inference. In this paper, we focus on distinguishing the cause from effect in the bivariate setting under limited observational data. Based on recent developments in meta learning as well as in causal inference, we introduce a novel generative model that allows distinguishing cause and effect in the small data setting. Using a learnt task variable that contains distributional information of each dataset, we propose an end-to-end algorithm that makes use of similar training datasets at test time. We demonstrate our method on various synthetic as well as real-world data and show that it is able to maintain high accuracy in detecting directions across varying dataset sizes.
Tuning hyperparameters of learning algorithms is hard because gradients are usually unavailable. We compute exact gradients of cross-validation performance with respect to all hyperparameters by chaining derivatives backwards through the entire training procedure. These gradients allow us to optimize thousands of hyperparameters, including step-size and momentum schedules, weight initialization distributions, richly parameterized regularization schemes, and neural network architectures. We compute hyperparameter gradients by exactly reversing the dynamics of stochastic gradient descent with momentum.
Hyperparameter optimization aims to find the optimal hyperparameter configuration of a machine learning model, which provides the best performance on a validation dataset. Manual search usually leads to get stuck in a local hyperparameter configuration, and heavily depends on human intuition and experience. A simple alternative of manual search is random/grid search on a space of hyperparameters, which still undergoes extensive evaluations of validation errors in order to find its best configuration. Bayesian optimization that is a global optimization method for black-box functions is now popular for hyperparameter optimization, since it greatly reduces the number of validation error evaluations required, compared to random/grid search. Bayesian optimization generally finds the best hyperparameter configuration from random initialization without any prior knowledge. This motivates us to let Bayesian optimization start from the configurations that were successful on similar datasets, which are able to remarkably minimize the number of evaluations. In this paper, we propose deep metric learning to learn meta-features over datasets such that the similarity over them is effectively measured by Euclidean distance between their associated meta-features. To this end, we introduce a Siamese network composed of deep feature and meta-feature extractors, where deep feature extractor provides a semantic representation of each instance in a dataset and meta-feature extractor aggregates a set of deep features to encode a single representation over a dataset. Then, our learned meta-features are used to select a few datasets similar to the new dataset, so that hyperparameters in similar datasets are adopted as initializations to warm-start Bayesian hyperparameter optimization.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا