No Arabic abstract
The majority of inherited retinal degenerations are due to photoreceptor cell death. In many cases ganglion cells are spared making it possible to stimulate them to restore visual function. Several studies (Bi et al., 2006; Lin et al., 2008; Sengupta et al., 2016; Caporale et al., 2011; Berry et al., 2017) have shown that it is possible to express an optogenetic protein in ganglion cells and make them light sensitive. This is a promising strategy to restore vision since optical targeting may be more precise than electrical stimulation with a retinal prothesis. However the spatial resolution of optogenetically-reactivated retinas has not been measured with fine-grained stimulation patterns. Since the optogenetic protein is also expressed in axons, it is unclear if these neurons will only be sensitive to the stimulation of a small region covering their somas and dendrites, or if they will also respond to any stimulation overlapping with their axon, dramatically impairing spatial resolution. Here we recorded responses of mouse and macaque retinas to random checkerboard patterns following an in vivo optogenetic therapy. We show that optogenetically activated ganglion cells are each sensitive to a small region of visual space. A simple model based on this small receptive field predicted accurately their responses to complex stimuli. From this model, we simulated how the entire population of light sensitive ganglion cells would respond to letters of different sizes. We then estimated the maximal acuity expected by a patient, assuming it could make an optimal use of the information delivered by this reactivated retina. The obtained acuity is above the limit of legal blindness. This high spatial resolution is a promising result for future clinical studies.
We present a high-throughput optogenetic illumination system capable of simultaneous closed-loop light delivery to specified targets in populations of moving Caenorhabditis elegans. The instrument addresses three technical challenges: it delivers targeted illumination to specified regions of the animals body such as its head or tail; it automatically delivers stimuli triggered upon the animals behavior; and it achieves high throughput by targeting many animals simultaneously. The instrument was used to optogenetically probe the animals behavioral response to competing mechanosensory stimuli in the the anterior and posterior soft touch receptor neurons. Responses to more than $10^4$ stimulus events from a range of anterior-posterior intensity combinations were measured. The animals probability of sprinting forward in response to a mechanosensory stimulus depended on both the anterior and posterior stimulation intensity, while the probability of reversing depended primarily on the posterior stimulation intensity. We also probed the animals response to mechanosensory stimulation during the onset of turning, a relatively rare behavioral event, by delivering stimuli automatically when the animal began to turn. Using this closed-loop approach, over $10^3$ stimulus events were delivered during turning onset at a rate of 9.2 events per worm-hour, a greater than 25-fold increase in throughput compared to previous investigations. These measurements validate with greater statistical power previous findings that turning acts to gate mechanosensory evoked reversals. Compared to previous approaches, the current system offers targeted optogenetic stimulation to specific body regions or behaviors with many-fold increases in throughput to better constrain quantitative models of sensorimotor processing.
Stimulation of target neuronal populations using optogenetic techniques during specific sleep stages has begun to elucidate the mechanisms and effects of sleep. To conduct closed-loop optogenetic sleep studies in untethered animals, we designed a fully integrated, low-power system-on-chip (SoC) for real-time sleep stage classification and stage-specific optical stimulation. The SoC consists of a 4-channel analog front-end for recording polysomnography signals, a mixed-signal machine-learning (ML) core, and a 16-channel optical stimulation back-end. A novel ML algorithm and innovative circuit design techniques improved the online classification performance while minimizing power consumption. The SoC was designed and simulated in 180 nm CMOS technology. In an evaluation using an expert labeled sleep database with 20 subjects, the SoC achieves a high sensitivity of 0.806 and a specificity of 0.947 in discriminating 5 sleep stages. Overall power consumption in continuous operation is 97 uW.
The emerging field of optogenetics allows for optical activation or inhibition of neurons and other tissue in the nervous system. In 2005 optogenetic proteins were expressed in the nematode C. elegans for the first time. Since then, C. elegans has served as a powerful platform upon which to conduct optogenetic investigations of synaptic function, circuit dynamics and the neuronal basis of behavior. The C. elegans nervous system, consisting of 302 neurons, whose connectivity and morphology has been mapped completely, drives a rich repertoire of behaviors that are quantifiable by video microscopy. This model organisms compact nervous system, quantifiable behavior, genetic tractability and optical accessibility make it especially amenable to optogenetic interrogation. Channelrhodopsin-2 (ChR2), halorhodopsin (NpHR/Halo) and other common optogenetic proteins have all been expressed in C. elegans. Moreover recent advances leveraging molecular genetics and patterned light illumination have now made it possible to target photoactivation and inhibition to single cells and to do so in worms as they behave freely. Here we describe techniques and methods for optogenetic manipulation in C. elegans. We review recent work using optogenetics and C. elegans for neuroscience investigations at the level of synapses, circuits and behavior.
Conventionally, information is represented by spike rates in the neural system. Here, we consider the ability of temporally modulated activities in neuronal networks to carry information extra to spike rates. These temporal modulations, commonly known as population spikes, are due to the presence of synaptic depression in a neuronal network model. We discuss its relevance to an experiment on transparent motions in macaque monkeys by Treue et al. in 2000. They found that if the moving directions of objects are too close, the firing rate profile will be very similar to that with one direction. As the difference in the moving directions of objects is large enough, the neuronal system would respond in such a way that the network enhances the resolution in the moving directions of the objects. In this paper, we propose that this behavior can be reproduced by neural networks with dynamical synapses when there are multiple external inputs. We will demonstrate how resolution enhancement can be achieved, and discuss the conditions under which temporally modulated activities are able to enhance information processing performances in general.
Intracellular recordings of neuronal membrane potential are a central tool in neurophysiology. In many situations, especially in vivo, the traditional limitation of such recordings is the high electrode resistance, which may cause significant measurement errors. We introduce a computer-aided technique, Active Electrode Compensation (AEC), based on a digital model of the electrode interfaced in real time with the electrophysiological setup. The characteristics of this model are first estimated using white noise current injection. The electrode and membrane contribution are digitally separated, and the recording is then made by online subtraction of the electrode contribution. Tests comparing AEC to other techniques demonstrate that it yields recordings with improved accuracy. It enables high-frequency recordings in demanding conditions, such as injection of conductance noise in dynamic-clamp mode, not feasible with a single high resistance electrode until now. AEC should be particularly useful to characterize fast phenomena in neurons, in vivo and in vitro.