Do you want to publish a course? Click here

Resolution enhancement in neural networks with dynamical synapses

239   0   0.0 ( 0 )
 Added by C.C. Alan Fung
 Publication date 2013
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Conventionally, information is represented by spike rates in the neural system. Here, we consider the ability of temporally modulated activities in neuronal networks to carry information extra to spike rates. These temporal modulations, commonly known as population spikes, are due to the presence of synaptic depression in a neuronal network model. We discuss its relevance to an experiment on transparent motions in macaque monkeys by Treue et al. in 2000. They found that if the moving directions of objects are too close, the firing rate profile will be very similar to that with one direction. As the difference in the moving directions of objects is large enough, the neuronal system would respond in such a way that the network enhances the resolution in the moving directions of the objects. In this paper, we propose that this behavior can be reproduced by neural networks with dynamical synapses when there are multiple external inputs. We will demonstrate how resolution enhancement can be achieved, and discuss the conditions under which temporally modulated activities are able to enhance information processing performances in general.



rate research

Read More

A great deal of research has been devoted on the investigation of neural dynamics in various network topologies. However, only a few studies have focused on the influence of autapses, synapses from a neuron onto itself via closed loops, on neural synchronisation. Here, we build a random network with adaptive exponential integrate-and-fire neurons coupled with chemical synapses, equipped with autapses, to study the effect of the latter on synchronous behaviour. We consider time delay in the conductance of the pre-synaptic neuron for excitatory and inhibitory connections. Interestingly, in neural networks consisting of both excitatory and inhibitory neurons, we uncover that synchronous behaviour depends on their synapse type. Our results provide evidence on the synchronous and desynchronous activities that emerge in random neural networks with chemical, inhibitory and excitatory synapses where neurons are equipped with autapses.
We investigate the synchronization features of a network of spiking neurons under a distance-dependent coupling following a power-law model. The interplay between topology and coupling strength leads to the existence of different spatiotemporal patterns, corresponding to either non-synchronized or phase-synchronized states. Particularly interesting is what we call synchronization malleability, in which the system depicts significantly different phase synchronization degrees for the same parameters as a consequence of a different ordering of neural inputs. We analyze the functional connectivity of the network by calculating the mutual information between neuronal spike trains, allowing us to characterize the structures of synchronization in the network. We show that these structures are dependent on the ordering of the inputs for the parameter regions where the network presents synchronization malleability and we suggest that this is due to a complex interplay between coupling, connection architecture, and individual neural inputs.
Networks of fast-spiking interneurons are crucial for the generation of neural oscillations in the brain. Here we study the synchronous behavior of interneuronal networks that are coupled by delayed inhibitory and fast electrical synapses. We find that both coupling modes play a crucial role by the synchronization of the network. In addition, delayed inhibitory synapses affect the emerging oscillatory patterns. By increasing the inhibitory synaptic delay, we observe a transition from regular to mixed oscillatory patterns at a critical value. We also examine how the unreliability of inhibitory synapses influences the emergence of synchronization and the oscillatory patterns. We find that low levels of reliability tend to destroy synchronization, and moreover, that interneuronal networks with long inhibitory synaptic delays require a minimal level of reliability for the mixed oscillatory pattern to be maintained.
The ability to acquire large-scale recordings of neuronal activity in awake and unrestrained animals poses a major challenge for studying neural coding of animal behavior. We present a new instrument capable of recording intracellular calcium transients from every neuron in the head of a freely behaving C. elegans with cellular resolution while simultaneously recording the animals position, posture and locomotion. We employ spinning-disk confocal microscopy to capture 3D volumetric fluorescent images of neurons expressing the calcium indicator GCaMP6s at 5 head-volumes per second. Two cameras simultaneously monitor the animals position and orientation. Custom software tracks the 3D position of the animals head in real-time and adjusts a motorized stage to keep it within the field of view as the animal roams freely. We observe calcium transients from 78 neurons and correlate this activity with the animals behavior. Across worms, multiple neurons show significant correlations with modes of behavior corresponding to forward, backward, and turning locomotion. By comparing the 3D positions of these neurons with a known atlas, our results are consistent with previous single-neuron studies and demonstrate the existence of new candidate neurons for behavioral circuits.
How can animals behave effectively in conditions involving different motivational contexts? Here, we propose how reinforcement learning neural networks can learn optimal behavior for dynamically changing motivational salience vectors. First, we show that Q-learning neural networks with motivation can navigate in environment with dynamic rewards. Second, we show that such networks can learn complex behaviors simultaneously directed towards several goals distributed in an environment. Finally, we show that in Pavlovian conditioning task, the responses of the neurons in our model resemble the firing patterns of neurons in the ventral pallidum (VP), a basal ganglia structure involved in motivated behaviors. We show that, similarly to real neurons, recurrent networks with motivation are composed of two oppositely-tuned classes of neurons, responding to positive and negative rewards. Our model generates predictions for the VP connectivity. We conclude that networks with motivation can rapidly adapt their behavior to varying conditions without changes in synaptic strength when expected reward is modulated by motivation. Such networks may also provide a mechanism for how hierarchical reinforcement learning is implemented in the brain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا