No Arabic abstract
We report the first experimental observation of superconductivity in Cd$_3$As$_2$ thin films without application of external pressure. Surface studies suggest that the observed transport characteristics are related to the polycrystalline continuous part of investigated films with homogeneous distribution of elements and the Cd-to-As ratio close to stoichiometric Cd$_3$As$_2$. The latter is also supported by Raman spectra of the studied films, which are similar to those of Cd$_3$As$_2$ single crystals. The formation of superconducting phase in films under study is confirmed by the characteristic behavior of temperature and magnetic field dependence of samples resistances, as well as by the presence of pronounced zero-resistance plateaux in $dV/dI$ characteristics. The corresponding $H_c-T_c$ plots reveal a clearly pronounced linear behavior within the intermediate temperature range, similar to that observed for bulk Cd$_3$As$_2$ and Bi$_2$Se$_3$ films under pressure, suggesting the possibility of nontrivial pairing in the films under investigation. We discuss a possible role of sample inhomogeneities and crystal strains in the observed phenomena.
The strong spin$-$orbit coupling (SOC) and numerous crystal phases in few$-$layer transition metal dichalcogenides (TMDCs) MX$_2$ (M$=$W, Mo, and X$=$Te, Se, S) has led to a variety of novel physics, such as Ising superconductivity and quantum spin Hall effect realized in monolayer 2H$-$ and Td$-$MX$_2$, respectively. Consecutive tailoring of the MX$_2$ structure from 2H to Td phase may realize the long$-$sought topological superconductivity in one material system by incorporating superconductivity and quantum spin Hall effect together. In this work, by combing Raman spectrum, X-ray photoelectron spectrum (XPS), scanning transmission electron microscopy imaging (STEM) as well as electrical transport measurements, we demonstrate that a consecutively structural phase transitions from Td to 1T$$ to 2H polytype can be realized as the Se-substitution concentration increases. More importantly, the Se$-$substitution has been found to notably enhance the superconductivity of the MoTe$_2$ thin film, which is interpreted as the introduction of the two$-$band superconductivity. The chemical constituent induced phase transition offers a new strategy to study the s$_{+-}$ superconductivity and the possible topological superconductivity as well as to develop phase$-$sensitive devices based on MX$_2$ materials.
We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1 - 0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as $T^{4.5}$, instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.
Superconductivity in granular films is controlled by the grain size and the inter-grain coupling. In a two-component granular system formed by a random mixture of a normal metal (N) and a superconductor (S), the superconducting nano-grains may become coupled through S-N weak links, thereby affecting the superconducting properties of the network. We report on the study of superconductivity in immiscible Nb-Cu nanocomposite films with varying compositions. The microstructure of the films revealed the presence of phase separated, closely spaced, nano-grains of Nb and Cu whose sizes changed marginally with composition. The superconducting transition temperature (Tc0) of the films decreased with increasing concentration of Cu with a concomitant decrease in the upper critical field (Hc2) and the critical current (Ic). Our results indicate the presence of superconducting phase fluctuations in all films with varying Nb:Cu content which not only affected the temperature for the formation of a true phase coherent superconducting condensate in the films but also other superconducting properties.
The recent discovery of superconductivity in the quasi-one-dimensional compound K$_2$Cr$_3$As$_3$, which consists of double-walled tubes of [(Cr$_3$As$_3$)$^{2-}]^infty$ that run along the c axis, has attracted immediate attention as a potential system for studying superconductors with reduced dimensionality. Here we report clear experimental evidence for the unconventional nature of the superconducting order parameter in K$_2$Cr$_3$As$_3$, by precisely measuring the temperature dependence of the change in the penetration depth $Deltalambda(T)$ using a tunnel diode oscillator. Linear behavior of $Deltalambda(T)$ is observed for $Tll T_c$, instead of the exponential behavior of conventional superconductors, indicating that there are line nodes in the superconducting gap. This is strong evidence for unconventional behavior and may provide key information for identifying the pairing state of this novel superconductor.
Disordered thin films close to the superconducting-insulating phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be revealed for example by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks that do not fit the BCS prediction. To explain these observations, we consider the effect of finite-range superconducting fluctuations on the density of states, focusing on the insulating side of the SIT. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks, even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks observed, for example, in the pseudo gap regime of high-temperature superconductors.