Do you want to publish a course? Click here

The Efficiency of Noble Gas Trapping in Astrophysical Environments

53   0   0.0 ( 0 )
 Added by Fred Ciesla
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Amorphous ice has long been invoked as a means for trapping extreme volatiles into solids, explaining the abundances of these species in comets and planetary atmospheres. Experiments have shown that such trapping is possible and have been used to estimate the abundances of each species in primitive ices after they formed. However, these experiments have been carried out at deposition rates which exceed those expected in a molecular cloud or solar nebula by many orders of magnitude. Here we develop a numerical model which reproduces the experimental results and apply it to those conditions expected in molecular clouds and protoplanetary disks. We find that two regimes of ice trapping exist: `burial trapping where the ratio of trapped species to water in the ice reflects that same ratio in the gas and `equilibrium trapping where the ratio in the ice depends only on the partial pressure of the trapped species in the gas. The boundary between these two regimes is set by both the temperature and rate of ice deposition. Such effects must be accounted for when determining the source of trapped volatiles during planet formation.



rate research

Read More

When imaged at high-resolution, many proto-planetary discs show gaps and rings in their dust sub-mm continuum emission profile. These structures are widely considered to originate from local maxima in the gas pressure profile. The properties of the underlying gas structures are however unknown. In this paper we present a method to measure the dust-gas coupling $alpha/St$ and the width of the gas pressure bumps affecting the dust distribution, applying high-precision techniques to extract the gas rotation curve from emission lines data-cubes. As a proof-of-concept, we then apply the method to two discs with prominent sub-structure, HD163296 and AS 209. We find that in all cases the gas structures are larger than in the dust, confirming that the rings are pressure traps. Although the grains are sufficiently decoupled from the gas to be radially concentrated, we find that the degree of coupling of the dust is relatively good ($alpha/St sim 0.1$). We can therefore reject scenarios in which the disc turbulence is very low and the dust has grown significantly. If we further assume that the dust grain sizes are set by turbulent fragmentation, we find high values of the $alpha$ turbulent parameter ($alpha sim 10^{-2}$). Alternatively, solutions with smaller turbulence are still compatible with our analysis if another process is limiting grain growth. For HD163296, recent measurements of the disc mass suggest that this is the case if the grain size is 1mm. Future constraints on the dust spectral indices will help to discriminate between the two alternatives.
The ROSINA mass spectrometer DFMS on board ESAs Rosetta spacecraft detected the major isotopes of the noble gases argon, krypton, and xenon in the coma of comet 67P/Churyumov-Gerasimenko. Earlier, it has been shown that xenon exhibits an isotopic composition distinct from anywhere else in the solar system. However, argon isotopes, within error, were shown to be consistent with solar isotope abundances. This discrepancy suggested an additional exotic component of xenon in comet 67P/Churyumov-Gerasimenko. Here we show that also krypton exhibits an isotopic composition close to solar. Furthermore, we found a depletion compared to solar of argon with respect to krypton and of krypton with respect to xenon, which is a necessity to postulate an addition of exotic xenon in the comet.
164 - M. Kohler , H. Daerr , P. Sahling 2014
The determination of isotope ratios of noble gas atoms has many applications e.g. in physics, nuclear arms control, and earth sciences. For several applications, the concentration of specific noble gas isotopes (e.g. Kr and Ar) is so low that single atom detection is highly desirable for a precise determination of the concentration. As an important step in this direction, we demonstrate operation of a krypton Atom Trap Trace Analysis (ATTA) setup based on a magneto-optical trap (MOT) for metastable Kr atoms excited by all-optical means. Compared to other state-of-the-art techniques for preparing metastable noble gas atoms, all-optical production is capable of overcoming limitations regarding minimal probe volume and avoiding cross-contamination of the samples. In addition, it allows for a compact and reliable setup. We identify optimal parameters of our experimental setup by employing the most abundant isotope Kr-84, and demonstrate single atom detection within a 3D MOT.
198 - M. De Becker 2013
Astrochemistry aims at studying chemical processes in astronomical environments. This discipline -- located at the crossroad between astrophysics and chemistry -- is rapidly evolving and explores the issue of the formation of molecules of increasing complexity in particular physical conditions that deviate significantly from those frequently encountered in chemistry laboratories. The main goal of this paper is to provide an overview of this discipline. So far, about 170 molecules have been identified in the interstellar medium (ISM). The presence of this molecular diversity constitutes a firm evidence that efficient formation processes are at work in the interstellar medium. This paper aims at summarizing most of present ideas that are explored by astrochemists to investigate the chemistry taking place in various astronomical environments, with emphasis on the particular conditions which are met in space (including radiation fields, cosmic-rays, low densities...). The more ambitious question of the molecular complexity is addressed following two approaches presented to be converging. The first approach considers the growing complexity starting from the most simple chemical species in interstellar environments, and the second approach envisages successive precursors of the most complex species commonly found on Earth, and in particular in our biochemistry. The issue of molecular complexity constitutes one of the main modern scientific questions addressed by astrochemistry, and it is used as a guideline across this paper.
Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provided the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction of research, motivated by several important problems in high-energy astrophysics --- reconnection in high energy density (HED) radiative plasmas, where radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. I identify the key processes distinguishing HED reconnection: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and Compton resistivity); and, at the most extreme end, QED effects, including pair creation. I then discuss the main astrophysical applications --- situations with magnetar-strength fields (exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares and magnetically-powered central engines and jets of GRBs. Here, magnetic energy density is so high that its dissipation heats the plasma to MeV temperatures. Electron-positron pairs are then copiously produced, making the reconnection layer highly collisional and dressing it in a thick pair coat that traps radiation. The pressure is dominated by radiation and pairs. Yet, radiation diffusion across the layer may be faster than the global Alfven transit time; then, radiative cooling governs the thermodynamics and reconnection becomes a radiative transfer problem, greatly affected by the ultra-strong magnetic field. This overall picture is very different from our traditional picture of reconnection and thus represents a new frontier in reconnection research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا