No Arabic abstract
We study the effects of the position of the passive and active cavities on the spontaneous parity-time (PT) symmetry breaking behavior in non-Hermitian coupled cavities array model. We analyze and discuss the energy eigenvalue spectrums and PT symmetry in the topologically trivial and nontrivial regimes under three different cases in detail, i.e., the passive and active cavities are located at, respectively, the two end positions, the second and penultimate positions, and each position in coupled cavities array. The odevity of the number of cavities is further considered to check the effects of the non-Hermitian terms applied on the PT symmetric and asymmetric systems. We find that the position of the passive and active cavities has remarkable impacts on the spontaneous PT symmetry breaking behavior, and in each case the system exhibits distinguishable and novel spontaneous PT symmetry breaking characteristic, respectively. The effects of the non-Hermitian terms on the $mathcal{PT}$ symmetric and asymmetric systems due to the odevity are comparatively different in the first case while qualitatively same in the second case.
Landaus spontaneous symmetry breaking theory is a fundamental theory that describes the collective behaviors in many-body systems. It was well known that for usual spontaneous symmetry breaking in Hermitian systems, the order-disorder phase transition with gap closing and spontaneous symmetry breaking occur at the same critical point. In this paper, we generalized the Landaus spontaneous symmetry breaking theory to the cases in non-Hermitian (NH) many-body systems with biorthogonal Z2 symmetry and tried to discover certain universal features. We were surprised to find that the effect of the NH terms splits the spontaneous biorthogonal Z2 symmetry breaking from a (biorthogonal) order-disorder phase transition with gap closing. The sudden change of similarity for two degenerate ground states indicates a new type of quantum phase transition without gap closing accompanied by spontaneous biorthogonal Z2 symmetry breaking. We will take the NH transverse Ising model as an example to investigate the anomalous spontaneous symmetry breaking. The numerical results were consistent with the theoretical predictions.
According to the topological band theory of a Hermitian system, the different electronic phases are classified in terms of topological invariants, wherein the transition between the two phases characterized by a different topological invariant is the primary signature of a topological phase transition. Recently, it has been argued that the delocalization-localization transition in a quasicrystal, described by the non-Hermitian $mathcal{PT}$-symmetric extension of the Aubry-Andr{e}-Harper (AAH) Hamiltonian can also be identified as a topological phase transition. Interestingly, the $mathcal{PT}$-symmetry also breaks down at the same critical point. However, in this article, we have shown that the delocalization-localization transition and the $mathcal{PT}$-symmetry breaking are not connected to a topological phase transition. To demonstrate this, we have studied the non-Hermitian $mathcal{PT}$-symmetric AAH Hamiltonian in the presence of Rashba Spin-Orbit (RSO) coupling. We have obtained an analytical expression of the topological transition point and compared it with the numerically obtained critical points. We have found that, except in some special cases, the critical point and the topological transition point are not the same. In fact, the delocalization-localization transition takes place earlier than the topological transition whenever they do not coincide.
We theoretically address squeezed light generation through the spontaneous breaking of the rotational invariance occuring in a type I degenerate optical parametric oscillator (DOPO) pumped above threshold. We show that a DOPO with spherical mirrors, in which the signal and idler fields correspond to first order Laguerre-Gauss modes, produces a perfectly squeezed vacuum with the shape of a Hermite-Gauss mode, within the linearized theory. This occurs at any pumping level above threshold, hence the phenomenon is non-critical. Imperfections of the rotational symmetry, due e.g. to cavity anisotropy, are shown to have a small impact, hence the result is not singular.
Quantum adiabatic evolution, an important fundamental concept inphysics, describes the dynamical evolution arbitrarily close to the instantaneous eigenstate of a slowly driven Hamiltonian. In most systems undergoing spontaneous symmetry-breaking transitions, their two lowest eigenstates change from non-degenerate to degenerate. Therefore, due to the corresponding energy-gap vanishes, the conventional adiabatic condition becomes invalid. Here we explore the existence of quantum adiabatic evolutions in spontaneous symmetry-breaking transitions and derive a symmetry-dependent adiabatic condition. Because the driven Hamiltonian conserves the symmetry in the whole process, the transition between different instantaneous eigenstates with different symmetries is forbidden. Therefore, even if the minimum energy-gap vanishes, symmetry-protected quantum adiabatic evolutioncan still appear when the driven system varies according to the symmetry-dependent adiabatic condition. This study not only advances our understandings of quantum adiabatic evolution and spontaneous symmetry-breaking transitions, but also provides extensive applications ranging from quantum state engineering, topological Thouless pumping to quantum computing.
We present spontaneous symmetry breaking in a nanoscale version of a setup prolific in classical mechanics: two coupled nanomechanical pendulums. The two pendulums are electron shuttles fabricated as nanopillars and placed between two capacitor plates in a homogeneous electric field. Instead of being mechanically coupled through a spring they exchange electrons, i.e. they shuttle electrons from the source to the drain capacitor plate. Nonzero DC current through this system by external AC excitation is caused via dynamical symmetry breaking. This symmetry-broken current appears at sub- and superharmonics of the fundamental mode of the coupled system.