Do you want to publish a course? Click here

Three Z Cam-Type Dwarf Novae Exhibiting IW And-Type Phenomenon

64   0   0.0 ( 0 )
 Added by Taichi Kato
 Publication date 2018
  fields Physics
and research's language is English
 Authors Taichi Kato




Ask ChatGPT about the research

I found that V507 Cyg, IM Eri and FY Vul are Z Cam-type dwarf novae and they showed sequences of standstill terminated by brightening, in contrast to fading in ordinary Z Cam stars, followed by damping oscillation. These sequences are characteristic to IW And-type objects (also known as anomalous Z Cam stars). New additions to the IW And-type objects suggests that the IW And-type phenomenon is more prevalent among Z Cam stars. I suspect that the regularity of the pattern of the IW And-type phenomenon suggests a previously unknown type of limit-cycle oscillation, and I suggest that the standstill in these objects is somehow maintained in the inner part of the disk and the thermal instability starting from the outer part of the disk terminates the standstill to complete the cycle.



rate research

Read More

Photometry of Leo5 = 1H 1025+220 show that it is a dwarf nova of the Z Cam subtype. Two long standstills have been observed in the last five years.
IW And stars are a subgroup of dwarf novae characterized by repetitive light variations of the intermediate-brightness state with oscillations, which is terminated by brightening. This group of dwarf novae is also known to exhibit a wide variety even within one system in long-term light curves including usual dwarf-nova outbursts, Z Cam-type standstills, and so on, besides the typical IW And-type variations mentioned above. Following the recent observations suggesting that some IW And stars seem to have tilted disks, we have investigated how the thermal-viscous instability works in tilted accretion disks in dwarf novae and whether it could reproduce the essential features of the light curves in IW And stars. By adopting various simplifying assumptions for tilted disks, we have performed time-dependent one-dimensional numerical simulations of a viscous disk by taking into account various mass supply patterns to the disk; that is, the gas stream from the secondary star flows not only to the outer edge of the disk but also to the inner portions of the disk. We find that tilted disks can achieve a new kind of accretion cycle, in which the inner disk almost always stays in the hot state while the outer disk repeats outbursts, thereby reproducing alternating mid-brightness interval sometimes with dips and brightening, which are quite reminiscent of the most characteristic observational light variations of IW And stars. Further, we have found that our simulations produce diverse light variations, depending on different mass supply patterns even without time variations in mass transfer rates. This could explain the wide variety in long-term light curves of IW And stars.
Long term optical monitoring of the dwarf nova OQ Car has been conducted to study the previously unknown behaviour of this star system. The observations have shown OQ Car to have frequent dwarf nova outbursts and revealed the first recorded standstill of this star system. Based on this, we conclude that OQ Car is a new member of the Z Cam type dwarf novae.
The defining characteristic of Z Cam stars are standstills in their light curves. Some Z Cams exhibit atypical behaviour by going into outburst from a standstill. It has previously been suggested that UY Pup had been a Z Cam star, but it was ruled out due to its long-term light curve. However, in December 2015 UY Pup went into outburst and unexpectedly entered into a short standstill instead of returning to quiescence. Furthermore, UY Pup exhibited additional unusual behaviour with two outbursts detected during its standstill. After this standstill UY Pup made a brief excursion to a quiescence state and slowly rose to a longer and well-defined standstill, where it again went into another outburst. Through comparative analysis, research, and observational data of UY Pup it is evident and thus concluded that it is indeed a Z Cam star, in which renders it to be one of only four known anomalous Z Cam stars.
182 - Taichi Kato 2013
We studied the Kepler light curves of three SU UMa-type dwarf novae. Both the background dwarf nova of KIC 4378554 and V516 Lyr showed a combination of precursor-main superoutburst, during which superhumps always developed on the fading branch of the precursor. This finding supports the thermal-tidal instability theory as the origin of the superoutburst. A superoutburst of V585 Lyr recorded by Kepler did not show a precursor outburst and the superhumps developed only after the maximum light, a first example in the Kepler data so far. Such a superoutburst is understood within the thermal-tidal instability model. The observation of V585 Lyr made the first clear Kepler detection of the positive period derivative commonly seen in the stage B superhumps in dwarf novae with short orbital periods. In all objects, there was no strong signature of a transition to the dominating stream impact-type component of superhumps, suggesting that there is no strong indication of an enhanced mass-transfer following the superoutburst. We have determined the orbital period of V516 Lyr to be 0.083999(8) d. In V516 Lyr, some of outbursts were double outbursts in a various degree. The preceding outburst in the double outburst was of the inside-out nature while the following one was of the outside-in nature. One of superoutbursts in V516 Lyr was preceded by a double precursor. The preceding precursor failed to trigger a superoutburst and the following precursor triggered a superoutburst by developing positive superhumps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا