Do you want to publish a course? Click here

Deep Learning versus Classical Regression for Brain Tumor Patient Survival Prediction

83   0   0.0 ( 0 )
 Added by Yannick Suter
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Deep learning for regression tasks on medical imaging data has shown promising results. However, compared to other approaches, their power is strongly linked to the dataset size. In this study, we evaluate 3D-convolutional neural networks (CNNs) and classical regression methods with hand-crafted features for survival time regression of patients with high grade brain tumors. The tested CNNs for regression showed promising but unstable results. The best performing deep learning approach reached an accuracy of 51.5% on held-out samples of the training set. All tested deep learning experiments were outperformed by a Support Vector Classifier (SVC) using 30 radiomic features. The investigated features included intensity, shape, location and deep features. The submitted method to the BraTS 2018 survival prediction challenge is an ensemble of SVCs, which reached a cross-validated accuracy of 72.2% on the BraTS 2018 training set, 57.1% on the validation set, and 42.9% on the testing set. The results suggest that more training data is necessary for a stable performance of a CNN model for direct regression from magnetic resonance images, and that non-imaging clinical patient information is crucial along with imaging information.

rate research

Read More

This paper introduces a novel methodology to integrate human brain connectomics and parcellation for brain tumor segmentation and survival prediction. For segmentation, we utilize an existing brain parcellation atlas in the MNI152 1mm space and map this parcellation to each individual subject data. We use deep neural network architectures together with hard negative mining to achieve the final voxel level classification. For survival prediction, we present a new method for combining features from connectomics data, brain parcellation information, and the brain tumor mask. We leverage the average connectome information from the Human Connectome Project and map each subject brain volume onto this common connectome space. From this, we compute tractographic features that describe potential neural disruptions due to the brain tumor. These features are then used to predict the overall survival of the subjects. The main novelty in the proposed methods is the use of normalized brain parcellation data and tractography data from the human connectome project for analyzing MR images for segmentation and survival prediction. Experimental results are reported on the BraTS2018 dataset.
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.
242 - Tian Yu Liu , Jiashi Feng 2021
Brain tumor is a common and fatal form of cancer which affects both adults and children. The classification of brain tumors into different types is hence a crucial task, as it greatly influences the treatment that physicians will prescribe. In light of this, medical imaging techniques, especially those applying deep convolutional networks followed by a classification layer, have been developed to make possible computer-aided classification of brain tumor types. In this paper, we present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification. Along with using triplet loss variants, our approach applies contrastive learning to performing unsupervised pre-training, combined with a rare-case data augmentation module to effectively ameliorate the lack of data problem in the brain tumor imaging analysis domain. We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare. With a common encoder during all the experiments, we compare our approach with a baseline classification-layer based model, and the results well prove the effectiveness of our approach across all measured metrics.
Objective: Epilepsy is one of the most prevalent neurological diseases among humans and can lead to severe brain injuries, strokes, and brain tumors. Early detection of seizures can help to mitigate injuries, and can be used to aid the treatment of patients with epilepsy. The purpose of a seizure prediction system is to successfully identify the pre-ictal brain stage, which occurs before a seizure event. Patient-independent seizure prediction models are designed to offer accurate performance across multiple subjects within a dataset, and have been identified as a real-world solution to the seizure prediction problem. However, little attention has been given for designing such models to adapt to the high inter-subject variability in EEG data. Methods: We propose two patient-independent deep learning architectures with different learning strategies that can learn a global function utilizing data from multiple subjects. Results: Proposed models achieve state-of-the-art performance for seizure prediction on the CHB-MIT-EEG dataset, demonstrating 88.81% and 91.54% accuracy respectively. Conclusions: The Siamese model trained on the proposed learning strategy is able to learn patterns related to patient variations in data while predicting seizures. Significance: Our models show superior performance for patient-independent seizure prediction, and the same architecture can be used as a patient-specific classifier after model adaptation. We are the first study that employs model interpretation to understand classifier behavior for the task for seizure prediction, and we also show that the MFCC feature map utilized by our models contains predictive biomarkers related to interictal and pre-ictal brain states.
Accurate models of patient survival probabilities provide important information to clinicians prescribing care for life-threatening and terminal ailments. A recently developed class of models - known as individual survival distributions (ISDs) - produces patient-specific survival functions that offer greater descriptive power of patient outcomes than was previously possible. Unfortunately, at the time of writing, ISD models almost universally lack uncertainty quantification. In this paper, we demonstrate that an existing method for estimating simultaneous prediction intervals from samples can easily be adapted for patient-specific survival curve analysis and yields accurate results. Furthermore, we introduce both a modification to the existing method and a novel method for estimating simultaneous prediction intervals and show that they offer competitive performance. It is worth emphasizing that these methods are not limited to survival analysis and can be applied in any context in which sampling the distribution of interest is tractable. Code is available at https://github.com/ssokota/spie .

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا