No Arabic abstract
We demonstrate a new design principle for unidirectionally invisible non-Hermitian structures that are not only invisible for one specific wavelength but rather for a broad frequency range. Our idea is based on the concept of constant-intensity waves, which can propagate even through highly disordered media without back-scattering or intensity variations. Contrary to already existing invisibility studies, our new design principle requires neither a specific symmetry (like $mathcal{PT}$-symmetry) nor periodicity, and can thus be applied in a much wider context. This generality combined with broadband frequency stability allows a pulse to propagate through a disordered medium as if the medium was entirely uniform.
Recent studies of disorder or non-Hermiticity induced topological insulators inject new ingredients for engineering topological matter. Here we consider the effect of purely non-Hermitian disorders, a combination of these two ingredients, in a 1D chiral symmetric lattice with disordered gain and loss. The increasing disorder strength can drive a transition from trivial to topological insulators, characterizing by the change of topological winding number defined by localized states in the gapless and complex bulk spectra. The non-Hermitian critical behaviors are characterized by the biorthogonal localization length of zero energy edge modes, which diverges at the critical transition point and establishes the bulk-edge correspondence. Furthermore, we show that the bulk topology may be experimentally accessed by measuring the biorthogonal chiral displacement $mathcal{C}$, which converges to the winding number through time-averaging and can be extracted from proper Ramsey-interference sequences. We propose a scheme to implement and probe such non-Hermitian disorder driven topological insulators using photons in coupled micro-cavities.
A fundamental manifestation of wave scattering in a disordered medium is the highly complex intensity pattern the waves acquire due to multi-path interference. Here we show that these intensity variations can be entirely suppressed by adding disorder-specific gain and loss components to the medium. The resulting constant-intensity (CI) waves in such non-Hermitian scattering landscapes are free of any backscattering and feature perfect transmission through the disorder. An experimental demonstration of these unique wave states is envisioned based on spatially modulated pump beams that can flexibly control the gain and loss components in an active medium.
The interplay of fluctuations, ergodicity, and disorder in many-body interacting systems has been striking attention for half a century, pivoted on two celebrated phenomena: Anderson localization predicted in disordered media, and Fermi-Pasta-Ulam-Tsingou (FPUT) recurrence observed in a nonlinear system. The destruction of Anderson localization by nonlinearity and the recovery of ergodicity after long enough computational times lead to more questions. This thesis is devoted to contributing to the insight of the nonlinear system dynamics in and out of equilibrium. Focusing mainly on the GP lattice, we investigated elementary fluctuations close to zero temperature, localization properties, the chaotic subdiffusive regimes, and the non-equipartition of energy in non-Gibbs regime. Initially, we probe equilibrium dynamics in the ordered GP lattice and report a weakly non-ergodic dynamics, and an ergodic part in the non-Gibbs phase that implies the Gibbs distribution should be modified. Next, we include disorder in GP lattice, and build analytical expressions for the thermodynamic properties of the ground state, and identify a Lifshits glass regime where disorder dominates over the interactions. In the opposite strong interaction regime, we investigate the elementary excitations above the ground state and found a dramatic increase of the localization length of Bogoliubov modes (BM) with increasing particle density. Finally, we study non-equilibrium dynamics with disordered GP lattice by performing novel energy and norm density resolved wave packet spreading. In particular, we observed strong chaos spreading over several decades, and identified a Lifshits phase which shows a significant slowing down of sub-diffusive spreading.
Electromagnetic metasurfaces enable the advanced control of surface-wave propagation by spatially tailoring the local surface reactance. Interestingly, tailoring the surface resistance distribution in space provides new, largely unexplored degrees of freedom. Here, we show that suitable spatial modulations of the surface resistance between positive (i.e., loss) and negative (i.e., gain) values can induce peculiar dispersion effects, far beyond a mere compensation. Taking inspiration from the parity-time symmetry concept in quantum physics, we put forward and explore a class of non-Hermitian metasurfaces that may exhibit extreme anisotropy mainly induced by the gain-loss interplay. Via analytical modeling and full-wave numerical simulations, we illustrate the associated phenomenon of surface-wave canalization, explore nonlocal effects and possible departures from the ideal conditions, and address the feasibility of the required constitutive parameters. Our results suggest intriguing possibilities to dynamically reconfigure the surface-wave propagation, and are of potential interest for applications to imaging, sensing and communications.
A fundamental insight in the theory of diffusive random walks is that the mean length of trajectories traversing a finite open system is independent of the details of the diffusion process. Instead, the mean trajectory length depends only on the systems boundary geometry and is thus unaffected by the value of the mean free path. Here we show that this result is rooted on a much deeper level than that of a random walk, which allows us to extend the reach of this universal invariance property beyond the diffusion approximation. Specifically, we demonstrate that an equivalent invariance relation also holds for the scattering of waves in resonant structures as well as in ballistic, chaotic or in Anderson localized systems. Our work unifies a number of specific observations made in quite diverse fields of science ranging from the movement of ants to nuclear scattering theory. Potential experimental realizations using light fields in disordered media are discussed.