We present a comparative study of several algorithms for an in-plane random walk with a variable step. The goal is to check the efficiency of the algorithm in the case where the random walk terminates at some boundary. We recently found that a finite step of the random walk produces a bias in the hitting probability and this bias vanishes in the limit of an infinitesimal step. Therefore, it is important to know how a change in the step size of the random walk influences the performance of simulations. We propose an algorithm with the most effective procedure for the step-length-change protocol.
A well known connection between first-passage probability of random walk and distribution of electrical potential described by Laplace equation is studied. We simulate random walk in the plane numerically as a discrete time process with fixed step length. We measure first-passage probability to touch the absorbing sphere of radius $R$ in 2D. We found a regular deviation of the first-passage probability from the exact function, which we attribute to the finiteness of the random walk step.
In a simple model of a continuous random walk a particle moves in one dimension with the velocity fluctuating between V and -V. If V is associated with the thermal velocity of a Brownian particle and allowed to be position dependent, the model accounts readily for the particles drift along the temperature gradient and recovers basic results of the conventional thermophoresis theory.
The random walk with hyperbolic probabilities that we are introducing is an example of stochastic diffusion in a one-dimensional heterogeneous media. Although driven by site-dependent one-step transition probabilities, the process retains some of the features of a simple random walk, shows other traits that one would associate with a biased random walk and, at the same time, presents new properties not related with either of them. In particular, we show how the system is not fully ergodic, as not every statistic can be estimated from a single realization of the process. We further give a geometric interpretation for the origin of these irregular transition probabilities.
The probability distribution of the number $s$ of distinct sites visited up to time $t$ by a random walk on the fully-connected lattice with $N$ sites is first obtained by solving the eigenvalue problem associated with the discrete master equation. Then, using generating function techniques, we compute the joint probability distribution of $s$ and $r$, where $r$ is the number of sites visited only once up to time $t$. Mean values, variances and covariance are deduced from the generating functions and their finite-size-scaling behaviour is studied. Introducing properly centered and scaled variables $u$ and $v$ for $r$ and $s$ and working in the scaling limit ($ttoinfty$, $Ntoinfty$ with $w=t/N$ fixed) the joint probability density of $u$ and $v$ is shown to be a bivariate Gaussian density. It follows that the fluctuations of $r$ and $s$ around their mean values in a finite-size system are Gaussian in the scaling limit. The same type of finite-size scaling is expected to hold on periodic lattices above the critical dimension $d_{rm c}=2$.
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. The fundamental solution (for the {Cauchy} problem) of the fractional diffusion equations can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we generate models of random walk discrete in space and time suitable for simulating random variables whose spatial probability density evolves in time according to a given fractional diffusion equation.
Olga Klimenkova
,Anton Yu. Menshutin
,Lev N. Shchur
.
(2018)
.
"Variable-step-length algorithms for a random walk: hitting probability and computation performance"
.
Lev N. Shchur
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا