Do you want to publish a course? Click here

Superconductivity from the Condensation of Topological Defects in a Quantum Spin-Hall Insulator

95   0   0.0 ( 0 )
 Added by Yuhai Liu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery that spin-orbit coupling can generate a new state of matter in the form of quantum spin-Hall (QSH) insulators has brought topology to the forefront of condensed matter physics. While QSH states from spin-orbit coupling can be fully understood in terms of band theory, fascinating many-body effects are expected if the state instead results from interaction-generated symmetry breaking. In particular, topological defects of the corresponding order parameter provide a route to exotic quantum phase transitions. Here, we introduce a model in which the condensation of skyrmion defects in an interaction-generated QSH insulator produces a superconducting (SC) phase. Because vortex excitations of the latter carry a spin-$1/2$ degree of freedom numbers, the SC order may be understood as emerging from a gapless spin liquid normal state. The QSH-SC transition is an example of a deconfined quantum critical point (DQCP), for which we provide an improved model with only a single length scale that is accessible to large-scale quantum Monte Carlo simulations.



rate research

Read More

Using THz spectroscopy in external magnetic fields we investigate the low-temperature charge dynamics of strained HgTe, a three dimensional topological insulator. From the Faraday rotation angle and ellipticity a complete characterization of the charge carriers is obtained, including the 2D density, the scattering rate and the Fermi velocity. The obtained value of the Fermi velocity provides further evidence for the Dirac character of the carriers in the sample. In resonator experiments, we observe quantum Hall oscillations at THz frequencies. The 2D density estimated from the period of these oscillations agrees well with direct transport experiments on the topological surface state. Our findings open new avenues for the studies of the finite-frequency quantum Hall effect in topological insulators.
By using the cluster perturbation theory, we investigate the effects of the local electron-phonon interaction in the quantum spin Hall topological insulator described by the half-filled Kane-Mele model on an honeycomb lattice. Starting from the topological non trivial phase, where the minimal gap is located at the two inequivalent Dirac points of the Graphene, $text{K}$ and $text{K}$, we show that the coupling with quantum phonons induces a topological-trivial quantum phase transition through a gap closing and reopening in the $text{M}$ point of the Brillouin zone. The average number of fermions in this point turns out to be a direct indicator of the quantum transition pointing out a strong hybridization between the two bare quasiparticle bands of the Kane-Mele model. By increasing the strength of charge-lattice coupling, the phonon Greens propagator displays a two peak structure: the one located at the lowest energy exhibits a softening that is maximum around the topological transition. Numerical simulations provide also evidence of several kinks in the quasiparticle dispersion caused by the coupling of the electrons with the bosonic lattice mode.
The physics of a junction composed of a normal metal, quantum dot and 2D topological insulator (in a quantum spin Hall state) is elucidated. It maifests a subtle combination of Kondo correlations and quantum spin Hall edge states moving on the opposite sides of the 2D topological insulator. In a narrow strip geometry these edge states interact and a gap opens in the edge state spectrum. Consequently, Kondo screening is less effective and that affects electron transport through the junction. Specifically, when edge state coupling is strong enough, the tunneling differential conductance develops a dip at zero temperature instead of the standard zero bias Kondo peak.
Lacunar spinel GaTa$_4$Se$_8$ is a unique example of spin-orbit coupled Mott insulator described by molecular $j_{text{eff}}!=!3/2$ states. It becomes superconducting at T$_c$=5.8K under pressure without doping. In this work, we show, this pressure-induced superconductivity is a realization of a new type topological phase characterized by spin-2 Cooper pairs. Starting from first-principles density functional calculations and random phase approximation, we construct the microscopic model and perform the detailed analysis. Applying pressure is found to trigger the virtual interband tunneling processes assisted by strong Hund coupling, thereby stabilizing a particular $d$-wave quintet channel. Furthermore, we show that its Bogoliubov quasiparticles and their surface states exhibit novel topological nature. To verify our theory, we propose unique experimental signatures that can be measured by Josephson junction transport and scanning tunneling microscope. Our findings open up new directions searching for exotic superconductivity in spin-orbit coupled materials.
The original proposal to achieve superconductivity by starting from a quantum spin-liquid (QSL) and doping it with charge carriers, as proposed by Anderson in 1987, has yet to be realized. Here we propose an alternative strategy: use a QSL as a substrate for heterostructure growth of metallic films to design exotic superconductors. By spatially separating the two key ingredients of superconductivity, i.e., charge carriers (metal) and pairing interaction (QSL), the proposed setup naturally lands on the parameter regime conducive to a controlled theoretical prediction. Moreover, the proposed setup allows us to customize electron-electron interaction imprinted on the metallic layer. The QSL material of our choice is quantum spin ice well-known for its emergent gauge-field description of spin frustration. Assuming the metallic layer forms an isotropic single Fermi pocket, we predict that the coupling between the emergent gauge-field and the electrons of the metallic layer will drive topological odd-parity pairing. We further present guiding principles for materializing the suitable heterostructure using ab initio calculations and describe the band structure we predict for the case of Y$_2$Sn$_{2-x}$Sb$_x$O$_7$ grown on the (111) surface of Pr$_2$Zr$_2$O$_7$. Using this microscopic information, we predict topological odd-parity superconductivity at a few Kelvin in this heterostructure, which is comparable to the $T_c$ of the only other confirmed odd-parity superconductor Sr$_2$RuO$_4$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا